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Endre T. Somogyi

SIMULATION OF ELECTROCHEMICAL AND STOCHASTIC SYSTEMS

USING JUST IN TIME COMPILED DECLARATIVE LANGUAGES

Computational biology is a relatively new discipline which sits at the intersection of

computer science, physics, chemistry and biology. One of the primary goals of computational

biology is to develop predictive algorithmic and mathematical models of biological processes.

A model description in a declarative language such as SBML express the structure of

the model without having the specify the explicit control flow. Declarative descriptions

have numerous advantages over lower level programming languages. The SBML language is

specifically oriented towards describing biochemical systems: one simply has to list reactants

and the relationships, as opposed to lower level procedural languages, where one would have

to explicitly specify the computational details. Models may also be readily exchanged and

reused in a variety of applications.

A number of interpreters exist for simulating SBML models, but to our knowledge, there

are no Just In Time (JIT) compilers. Compiled languages often offer hundred fold perfor-

mance improvements over interpreters. As simulations of cellular systems become more

complex, particularly in multicellular models, the need for reusable and high performance

simulation engines is becoming clear.

This thesis will describe the SBML JIT compiler, simulation and analysis library that

was developed. The library has been designed to be extensible and offers superior perfor-

mance to standard desktop simulators and supports a variety of analyses including time

course simulation and a wide range of analysis features such as steady state and metabolic

control analysis.

The library was used to develop a physically based model of the first component of

the mitochondrial electron transport chain. Mitochondria play a essential role in cellular

biology, and there exists a need for a physically accurate and interchangeable models of
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mitochondrial processes. Additionally, to demonstrate the stochastic capabilities of the

library, a stochastic bistable chemical system was modeled and analyzed.

Peter J. Ortoleva

John M. Beggs

Randall Bramley

Sima Setayeshgar
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Chapter 1

Introduction

A constructionist methodology begins with a known set of building blocks and attempts to

assemble them into a larger, more complex system. This is the approach that an engineer

or condensed matter physicist would take to build or understand a complex system. There

is no better way to understand a system than to build it. The fundamental goal here is not

discovering the underlying quantum-mechanical laws, but rather understanding how com-

plex systems composed of simpler components behave and interact – in understanding the

new laws that emerge when these building blocks interact. The constructionist perspective

is complementary to the reductionist perspective that particle physicist would take. Here,

the goal is to look ever lower and lower to finally arrive at the ultimate building blocks.

Originally, these blocks were the atoms. Then it was discovered that atoms were made of

electrons, protons and neutrons. These were then discovered to be made of quarks, and

these in turn are perhaps made of strings.

There can be little doubt of the tremendous advancements in science that a reductionist

perspective has had, however such a perspective may not be the most useful way of ap-

proaching the complex systems such as seen in biology or condensed matter physics. As

Paul Anderson said, “The ability to reduce everything to simple fundamental laws does

not imply the ability to start from those laws and reconstruct the universe” [4]. Knowing

the exact properties of quarks in excruciating detail is not terribly helpful in understand-

ing how a biological cell functions. Quantum chromo-dynamics simulations of quarks can

take a months of super computer time [22]. Similarly with quantum-mechanical calcula-

tions, although these may be useful for calibrating larger scale molecular dynamics models.

Molecular dynamics on the other hand start with the building blocks of amino acids and
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molecules and these are useful for calibrating models of larger scale components such as,

say, ion pumps. A cell however contains millions if not billions of ion pumps and these

pumps are constantly reacting with a large collection of reactants. A choice of quarks or

elementary particles is not an appropriate choice as the building blocks of a cellular model,

much as grains of sand would not be an appropriate choice of building block with which to

construct the great pyramids. Because of their appropriate size and well defined behavior,

the set of amino acids is an appropriate building block to construct protein models. The

important point here is to choose the appropriate building blocks.

The software library developed in this thesis was developed as a tool for biophysics re-

search and facilitates the construction, simulation and analysis of complex biological models

that are composed of a set of potentially heterogeneous simpler models or building blocks.

The development of tools and techniques has always gone hand in hand with the progression

of scientific understanding. Hans Lippershey, an obscure spectacle-maker from Middleburg

Zeeland – who was referred to as an “illiterate mechanick” by Huygens [48] – is generally

credited with the invention of the telescope in 1608. Yet this illiterate mechanick’s invention

was used by the likes of Galileo, Kepler, Newton and Huygens himself to collect data and

bring about a revolution in our understanding of the cosmos and physics. New tools have

allowed the study of systems of ever decreasing as well as increasing size. The telescope

allowed the observation of larger systems such as our solar system. The development of

refrigeration techniques has allowed the study of smaller and smaller quantum mechanical

systems.

The development of advanced refrigeration techniques in the industrial revolution of

late nineteenth century allowed researchers such as Heike Kamerlingh Onnes to super-cool

materials to near absolute zero, resulting in the discovery of super conductivity. This

experimental observation lacked a theoretical explanation for thirty years [4].

Possibly one of the greatest innovations of the industrial revolution is the notion of

interchangeable parts. Before the 1800’s nearly all mechanisms were bespoke – each was

typically custom built for a specific purpose, and one could not take a component from one

mechanism and readily use it in another. Each building block here was custom made, from

screws to springs to gears. One could not build a mechanism without first building the
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building blocks.

Much as the industrial revolution brought about radical change in the 1800’s, the com-

puter revolution has and is bringing about radical changes in how science is performed

today. This revolution is rapidly opening up new avenues of scientific advancement. The

computational hardware resources available today are allowing scientists of all fields to

develop larger and more sophisticated simulations and analyze ever-increasing data sets.

The computer revolution would not have been possible without the notion of interchange-

able parts. Engineers have long since known of the benefits of component interoperability.

When an engineer designs a circuit board or a mechanism, these systems are constructed

out of a number of standard building blocks. Boards are constructed of a set of integrated

circuit (IC) elements. These in turn are constructed of basic elements such as transistors,

resistors, etc. These IC elements have standardized packages and interfaces which allow

them to be assembled to form more complex systems. It is a tremendous advantage to

be able to browse a catalog and choose a set of blocks to develop a novel component by

connecting them. The notion of interoperability is commonly found in nature itself as evi-

denced by the great many numbers of conserved gene circuits and protein complexes that

are found in a large number of species.

This notion of interoperability is not as prevalent as it could be in the areas of biolog-

ical modeling and computer software. A computational model of physical phenomena is

a mathematical representation meant to quantitatively describe the salient aspects of the

biological system they represent, as well as provide insights and predict the system’s dy-

namics in response to changing conditions. A mathematical model need not replicate every

internal detail of the system it is describing. Models of simpler biological systems form the

building blocks of more complex systems of biological models. This dissertation presents

a software library that was developed to combine a potentially large set of heterogeneous

biological models into a larger and potentially more complex system of models. This process

of assembling simpler models into systems gives insights into how these larger and more

complex systems form and function in nature.

In the constructionist or “bottom-up” modeling approach [3,14,36], a multitude of mod-

els may be connected to represent more complex higher level biological systems. However,
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guaranteeing the validity and predictability of the compounded ensemble may become in-

creasingly challenging as more components are integrated. Such modeling platforms may

combine very heterogeneous models from different scales, ranging from bimolecular detail

to sub-cellular networks to the continuum spatial level. At the molecular level, such plat-

forms contain a large number of kinetic models (e.g., ionotropic receptors, channels and

exchangers) as well as complex second-messenger pathways, all integrated at the cellular

level into morphologically detailed neuronal models. As a result, such platforms contain

an overwhelmingly large number of models and parameters. Each of the models present in

the platform must be independently calibrated and validated with respect to experimental

results.

As more experimental data becomes available, as our understanding of biochemical

interactions increases, so will the size and complexity of biochemical models. Not only is

the size of chemical network models increasing, but so is the complexity and sophistication

of these models’ rate laws and reaction dynamics. These complex networks contain an ever-

increasing number of parameters that must be fitted from experimental data. Chemical

networks are also being used to model the sub-cellular reaction network in a variety of

cellular and virtual tissue simulators. Thus, there is a need for a modular, high-performance

simulation library that can excel at simulating and analyzing such increasingly complex

models.

Currently, the only way to determine the values for such model parameters is by simu-

lating the models and comparing the simulation results to experimental data. This entails a

very large number of simulations and consumes a significant amount of computational time

and resources. The Systems Biology Markup Language (SBML) simulation library devel-

oped here enables the development of such complex biological models [15]. No other SBML

simulation engine has the level of performance or interoperability as the one developed here.

1.1 Interoperability and Heterogeneous Models

For a mathematical model to be useful, not only must it provide some predictive, or at least

explanatory capability, but it must also be interchangeable among different platforms and
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programs. For many years (and very sadly, even still) mathematical models were distributed

as FORTRAN programs. These programs typically have some proprietary input and output

file formats. The most common way to re-use these programs is to attempt to compile them

oneself, then write a generator/parser to create input files and parse output files, and then

(of course) a script to actually execute the program.

Programmatically interfacing with external programs (assuming one can even compile

them) is fraught with error primarily due to the large amount of state that these programs

may require to be present on the file system. These programs are typically written under

the assumption that they will be run once, for one particular calculation and then discarded.

This presents a difficulty for calling programs, as they must determine the current state of

the file system, copy and convert large portions of internal state into input files, call these

programs, parse the output, and finally clean up after these programs are run.

Perhaps worse still are models published in a proprietary format such as MATLAB.

This requires that the user also purchase and use MATLAB which may be a significant

financial outlay. Worse even still are models published only as equations in a journal.

These models are typically missing terms, missing parameters, or use unusual mathematical

conventions. Thus there is a need for mathematical models published in a self-contained

reusable interchange format.

Cellular and virtual tissue simulators such as CompuCell3D [75] or V-Cell [70], or CELL-

SZYZS [43] operate on complex spatial cellular and virtual tissue domains which have much

longer time and length scales than the typical sub-cellular reaction network. The sub-cellular

reaction network is however still kept in inter-cellular domains such as the cytoplasm and

these reaction networks are typically represented as SBML models. Thus, there is a need for

software components that can easily be used as a component of existing cellular simulators.

Many of these simulators have used SOSLib [56]. This is an older simulation library

that has the benefits of being fairly small and self contained, however it does not appear

to have been maintained in some time and has a very limited Application programming

interface (API). SOSLib is also very difficult to build on modern operating systems as

it relies on a number of older versions of software packages which are difficult to build

on modern operating systems. Some virtual tissue simulators such as CompuCell3D have
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previously used SOSLib but have already switched to the libRoadRunner library developed

here.

The problems encountered in biology tend to be much more heterogeneous than those

in condensed matter physics. In condensed matter physics, one frequently deals with a

ensembles of homogeneous particles such as a gas or liquid composed of one chemical species.

Highly complex behavior can arise from a collection of simple fluid particles; even a collection

of particles interacting with only a Van Der Walls potential is sufficient to reproduce most

of the behaviors encountered in Newtonian fluid dynamics. Biological building blocks tend

to be more complex, and they tend to be heterogeneous. For example, a cell has a set of

internal reactions which may be modeled via a reaction-kinetics model (such as the ones

which will be described in this thesis). Cells are typically found in a aqueous environment

which allows free diffusion of reactants to and from the cell. This environment is most

efficiently treated as a continuum fluid model. The library developed here has been used

in such simulations, for example, spatial models of complex biological processes such as

glutameric synapse simulations [3, 36]. These simulations use a chemical network model

to simulate the reactions and distributions of compounds in the synaptic cleft. These

simulations also contain a large number of free parameters that can only be determined by

running a large number of simulations, hence the need for a high performance simulation

library.

Another example of such a heterogeneous system is the growth of tumor cells. Here

again, the internal cell cycle is modeled with a reaction-kinetics network, and the cells exist

in a fluid environment which supports free diffusion of reactants such as oxygen. A time

series of this simulation, developed by Powathil, Chaplain and Swat [62] is shown in fig. 1.1.

1.2 Declarative Model Specification

As mentioned in 1.1, many biological models are published in FORTRAN or MATLAB

format. MATLAB is an excellent environment for developing a numerical algorithm or

performing data analysis; however, it may not be the ideal environment to develop and

publish a biological model.

6



Figure 1.1: A heterogeneous model of the growth of cancer tumor cells from [62]. Here,
the internal cell cycle dynamics is modeled as a reaction-kinetics network and this network is
coupled continuum fluid model which supports free diffusion. The background field represents
oxygen concentration.

MATLAB, FORTRAN, and to an extent, C are all what are called procedural languages.

In a procedural language, the exact details of the computation are encoded in a sequence of

language statements. To define a biological simulation in a procedural language, one must

first identify all the state variables, store these in a state vector, write a series of routines

which calculate the rate of change of the state vector and finally explicitly specify all the

exact details of calling an integrator.

Biological reaction-kinetics models however can be much simpler. At a minimum, all one

should be required to do is list a set of reactants and products, and list a set of reactions that

they participate in. It can be up to the language runtime to determine low level details such

as the exact layout of the state vector and what the actual low-level differential equations

are that must be solved. In a declarative language, the user never needs to be concerned

with these low-level details.

This is exactly what the declarative language, Systems Biology Markup Language

(SBML), allows users to accomplish – define a biological model by specifying only a list

of reactants and products, and a list of reactions. Users can optionally specify a list of rules

or relationships the parameters or reactants must abide by as well. Therefore, SBML can

be thought of as more of a declarative rather than a procedural language. In a declarative

language, the programmer must explicitly define the exact computation to be performed.

The compiler of a declarative language must infer semantic meaning from a set of poten-

tially disjointed pieces of information. In a procedural language, however, the onus is on

7



the programmer to explicitly define the exact computation to be performed. The task of

compiling a procedural language is typically much simpler than compiling a declarative

language, as a procedural language places more of the burden for explicitly defining the

computation on the programmer rather than the compiler.

One of the primary advantages of using a declarative format to specify chemical models is

its interoperability with a wide range of existing software. Much like (standard) Hypertext

Markup Language (HTML), SBML can be displayed on a very wide range of platforms

ranging from handheld phones like iOS and Android devices all the way up to desktop

computers, and a variety of operating systems such as OSX, Linux, FreeBSD, Solaris, and

evidently even Windows can display web pages encoded in HTML. SBML is similar in this

respect to HTML, as it is designed as an interchange format.

A wide range of software exists for graphically building SBML models. At the time of

writing, 263 different software packages can import or export SBML models. These are

listed in the SBML software guide at [67]. A number of graphical model builders such as

Cell Designer [19], COPASI [44], and a variety of other tools can graphically display and

allow users to create and manipulate SBML models. Using such graphical builders, users

do not even have to write a single line of code.

Specifying the model in a higher level, declarative format such as SBML allows software

tools to perform a wide range of analyses (such as stoichiometric analysis of the model)

which would be exceedingly difficult to perform if the model were explicitly specified in

a low level procedural format. Declarative languages are ideal for such tasks as biological

model specification, although it may not be appropriate for all circumstances: one would not

want to write applications or operating systems in declarative languages. In such problem

domains, one does not need to explicitly specify the exact computation or the exact layout

of memory blocks, or other low level minutiæ.

1.3 Software Architecture

The LibRoadRunner library developed here is a self-contained, cross-platform library which

is designed to have a small memory footprint. There were three primary architectural goals:
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interoperability, modularity and speed. The library is designed to be used in existing virtual

tissue simulators, hence all internal code is C++ but the library has extensive language

bindings to Python as well as the native C++ interface. All internal modules are written

as a set of loosely coupled components. This creates a modular framework which readily

allows the development of new components such as integrators, steady state solvers or

back ends. The most novel feature of the LibRoadRunner library is this is the first known

SBML simulation engine which supports Just In Time Compile (JIT) compilation. Briefly,

this is a technique where a model described in a source language (SBML in this case) is

directly compiled to native executable machine code in memory. The library developed here

appears to be the first SBML simulation engine that achieves linear scaling 2.5.1. The other

simulation engines that were benchmarked could at best achieve quadratic scaling, and at

worst achieve only exponential scaling. The library also provides a rich suite of analysis

capabilities (MCA, stoichiometric, etc.).

The need for interoperability extends beyond just a library which is a small, self-

contained component – it must also be usable from a variety of different languages. Even

though most cellular and virtual tissue simulators are written in C++, many of them have a

scripting language interface (typically in Python); some are also written in Java. C++ may

be an ideal choice for time-critical components, however it is not a good choice for interac-

tive use and rapid prototyping such as in an interactive MATLAB session. Therefore, the

library developed here supports a variety of language bindings via SWIG [8]. The library

currently supports a native C++ API as well as a high performance Python binding. A

JavaScript binding for use in Node.js is currently under development.

1.4 Reusable Mitochondrial Model

The transduction of free energy from sugars to phosphorylate ADP to ATP is one of the

most fundamental and important reaction pathways in biology. Without a constant supply

of high free energy ATP, life as we know it would not exist. A great deal is known about this

reaction network; however, no complete, interchangeable model of the glycolysis/oxidative

phosphorylation reaction network appears to exist.
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Selivanov, et al., have published a series of mitochondrial Electron Transport Chain

(ETC) models [68, 69]. These however were hard-coded into a single monolithic C++

program which provided no programmatic interface or API. Effectively, this program is not

exchangeable and cannot be practically used in any existing software due to its lack of an

API.

1.5 Outline

In the biological modeling process, one first starts with empirical observations and combines

these with the known laws of mathematics, physics and chemistry using human reason and

insight to create a declarative, quantitative description or model of the phenomenon being

investigated. Traditionally, one then typically writes down a set of differential equations

that describe or govern the system. Then a computer program is written which implements

these differential equations in an form that a machine can accept. An automated process

then compiles this code into an executable form, combines it with various mathematical

software libraries such as integrators, linear solvers, etc. The output of this program is

then fed to an analysis package such as Mathematica or MATLAB. The biological modeling

process is represented in fig. 1.2.

The first steps in the process fundamentally require human reason and insight, and for

the foreseeable future, it is unlikely that any machine will be capable of accomplishing this

task. Standard software packages have always existed for the latter steps such as excellent

existing compilers, integrators, analysis packages, etc. This thesis focuses on developing

the tools that enable the automation of the middle steps and combines the later 2/3 of the

biological modeling process into a single, self-contained library that is designed to be used

in a wide variety of applications.

In this thesis, Chapter 2 focuses on the LibRoadRunner library developed herein. This

chapter gives an overview of declarative language specification of biological models, discusses

the process of declarative language Just In Time compilation and discusses the internal

architecture of the library in detail. This chapter also compares the library’s performance

benchmarks against a number of existing libraries’.
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∂tx1 =f1(x1, x1, · · · , xn)

∂tx2 =f2(x1, x1, · · · , xn)

...

∂txn =fn(x1, x1, · · · , xn)
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Figure 1.2: Overview of the biological modeling process. The section in red fundamentally
requires human insight and will likely not be automatable in the near future. The section in
yellow is often a manual process; this thesis will develop the tools to automate this section. The
section in green has always been easily automated by computer applications.

Chapter 3 discuses the development of a reusable model of the first complex of the

mitochondrial electron transport chain. The library developed here was used to perform

the simulations. Chapter 4 will demonstrate the capabilities of the stochastic integrator

that is part of the this library. This chapter also compares stochastic to deterministic

models and will include a derivation of the master equation and the stochastic simulation

algorithms which are required to perform such stochastic simulations.

Finally, Chapter 5 concludes with a number of planned future additions to the library.
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Chapter 2

Dynamic Compilation of Declarative Languages for Systems Biology

2.1 Introduction

LibRoadRunner is an open-source, cross-platform library for the numerical analysis of cel-

lular models expressed in Systems Biology Markup Language (SBML) [45]. The library

supports a variety of analyses including time course simulation and steady state analysis.

As simulations of cellular systems become more complex, particularly in multicellular mod-

els, the need for reusable and high performance simulation engines is becoming clear [75].

The LibRoadRunner library has been designed to be extensible and offers superior perfor-

mance to standard desktop simulators which will be demonstrated in § 2.5.1. This chapter

describes the architectural design of the LibRoadRunner library which has the following

key attributes: (1) extensible modular architecture which readily allows the development

of new components without altering any existing code (2) first known SBML JIT compiler,

(3) capable and well documented native bindings for Python, and C++, (4) extensive but

easy-to-use API which allows SBML model time series and steady state simulations, model

introspection and editing and a host of analysis features, (5) a self-contained library for

which we provide source code and binary packages for a variety of platforms, including 64

and 32 bit Linux (Intel), 64 bit OSX and 32 bit Windows. The code is written in platform

independent C++ and a native Python binding is also provided.

LibRoadRunner (as of the time of this writing) is linked against libSBML 5.9, hence

we support the entire SBML Level 3, Version 1 (L3V1) specification, with the exception of

delay equations, algebraic rules or fast reactions.
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2.2 Overview

2.2.1 Systems Biology Markup Language

Systems Biology Markup Language SBML [45] is a declarative representation format pri-

marily oriented towards describing and communicating computational models of biological

processes occurring in Continuous Well-Stirred Compartments (CWSC). A significant por-

tion of phenomena in biology and chemistry and chemical engineering are commonly de-

scribed as networks of reacting solutes in a set of such CWSCs. The CWSC approximation

holds when the mass diffusion rate is greater than approximately 5 times the maximum

chemical reaction rate, or the compartment is sufficiently small. More precisely, when

L2 < Jτ , where L is the characteristic length of the compartment, J is the mass diffusion

flux, and τ is the characteristic time of system reactions rates (inverse reaction rate).

Such models are frequently used to describe a diverse range of biological processes such

as cellular and sub-cellular processes, metabolic and reaction networks, cellular signaling

pathways, regulatory networks and electrophysiology.

SBML was originally developed to model biochemical kinetics networks, but has since

been augmented with an extensive event based programming model, auxiliary processes

not defined by the reaction network and arbitrary mathematical functions. SBML is often

misunderstood as being only a system for specifying ordinary differential equations (ODEs)

as many of the earlier SBML publications focused on this area. These additional capabilities

allow SBML to describe significantly more than just biochemical reaction kinetics models.

Although SBML can be used to describe nearly any computable process, as any com-

putable process may be described in terms of continuous dynamical systems, this is not

always practical. SBML is however ideal for representing biochemical models and has be-

come the de facto standard in this problem domain.

Representing a model in SBML has numerous advantages over explicitly specifying a

model in a comparatively low level programming language such as Python, MATLAB or

C++. The SBML language is specifically oriented towards describing biochemical systems

in a declarative manner. In SBML, one simply has to list reactants and the relationships

among the reactants to define a model. In lower level procedural languages, one would have
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to explicitly specify the computation – explicitly specify constructs such as the stoichiometry

matrix, state vectors, ODE, etc. and assemble these together with an integrator package.

The principal advantage for model specification in SBML is the interchangeability of

models. In addition to LibRoadRunner, numerous SBML simulation engines exist, each

oriented towards a specific niche: desktop end user applications such as COPASI [44] or Java

simulation environments such as systems biology simulations core algorithm biology library.

SBML models may be shared and published in exchange repositories such as the BioModels

database [10]. Because SBML is a language neutral specification, a range of packages exist

to edit, view or simulate models in a variety of different languages and environments. SBML

is intended to ensure the availability of models well beyond the lifetime of the packages that

originally created them.

The SBML language provides a set elements for building biochemical models which will

be summarized here. All elements in SBML are named and are given a unique identifier (id)

or symbol name, which is just a unique character string. Physical quantities are specified

in SBML as chemical species, parameters, or compartments. Relationships and dynamics

of these quantities are represented as rules or reactions.

Although SBML models are frequently solved deterministically, the SBML specification

does not specify what method is used for time evolution. This allows implementations

freedom to choose appropriate time evolution methods such as deterministic or stochastic

integrators. SBML only defines the state of the system, it does not specify how that

system should evolve in time. The LibRoadRunner library provides a number of different

integrators which evolve the system over time. These are discussed in §2.3.2.

An SBML model defines a set of state variables which may be either parameters, chemi-

cal species or possibly compartments. The time evolution of chemical species is determined

by the reaction network which is specified via a set of reactions. Any element in SBML may

be defined by a rule; this defines the element as a mathematical relationship of other SBML

elements. A model may have a set of events which define a discontinuous state change of

any SBML element. A number of other elements which do not effect the model state such

as unit definitions or constraints may also be specified. These will not be discussed here.

(For further details, see the SBML specification at [46].) The key SBML elements which
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define the model state and affect the model dynamics follow.

Parameters

SBML defines three kinds of symbols which may be evaluated to yield a numerical value:

parameters, compartments and species. Parameters are the most general kind in that they

are not assigned any specific physical meaning. Parameters may be interpreted as any

arbitrary numerical variable.

Species

Chemical species are divided into two categories, floating and boundary. Floating species

may be produced or consumed in a reaction network and their value over time is determined

by reaction kinetics. Boundary species are not produced or consumed in a reaction, and

their value is often fixed over time since they act as boundary conditions. The value of

a boundary species may however vary in time, as a boundary species may have an event

which changes its value or it may have a rate rule which alters its value. For example, a

boundary species may be considered an infinite source or sink for a chemical species. In

this case, even though they participate in a reaction network as products or reactants, the

value of the boundary species remains constant.

The state variables of an SBML model may consist of species, compartments or pa-

rameters. Species are intended to represent a chemical species, and these may be either

floating or boundary species. There are slightly different semantics between floating and

boundary species (for details, see [46]). The main difference is that the floating species value

over time is typically determined by the chemical reaction network, whereas the boundary

species values are not defined by the reaction network. Boundary species may appear as

reactants or products in a reaction, but the reaction network does not alter their values;

they are considered boundary conditions, hence their name. Note that either floating or

boundary species may be defined via rules. In this case, such floating species may not be

listed as reactants or products – the reaction network may not alter their values.

In SBML, chemical species have certain interesting behaviors, in that they may be con-

sidered either as an amount, e.g. having units of mass or particle count, or as a concentration
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having units of mass per volume or particle count per volume. This behavior is determined

by the substanceUnits SBML attribute.

As SBML is intended to describe a set of reactions occurring in a CWSC, each species

must reside in a compartment.

Compartments

Compartments are variables which represent the volume of a CWSC in which a set of species

reside. Physically, compartments are intended to represent volume elements whereas pa-

rameters may represent any arbitrary physical value. Semantically, the only real difference

between compartments and parameters is that, when a species is stated as having concen-

tration units, the species amount is automatically divided by the compartment volume in

which it resides.

When a species symbol is used in an expression such as in a rate rule or function, the

substanceUnits attribute determines whether a species is treated as an amount or concen-

tration. If the species is treated as a concentration, then the amount value is implicitly

divided by its compartment volume when the species symbol is dereferenced. Similarly,

when a species value is stored such as in an event assignment, then if the species is treated

as a concentration, the value to be stored is implicitly multiplied by the compartment

volume.

Function definitions

Functions in SBML are a mapping whose domain is a set of symbols in the SBML model

and whose codomain is a scalar value.

As stated in the SBML reference [46], functions are intended to be used as macros.

Many SBML engines use the libSBML macro expansion facility to expand function inline.

Even though it is stated that functions should not reference any symbol not explicitly given

as arguments, many SBML documents do reference other symbols. Even though this may

not be correct according to the spec, it is a commonly seen behavior in SBML documents

as a consequence of the macro expansion.

Most SBML engines just expand functions inline. This results in an interesting side
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effect: functions in SBML are effectively dynamically scoped. Dynamic scoping is used in

PERL, original Lisp (before Common Lisp) and some older programming languages such as

APL and SNOBOL. With this scoping behavior, functions first look for a local definition of

a symbol in the given set of arguments. If it is found here, it is resolved. If not, the symbols

are searched for one level up, which could be another function from which the current one

was called. The search continues up the list of scoping blocks until it reaches the set of local

parameters if the function was invoked from a reaction, and finally up to the global set of

SBML symbols.

The compilation process for functions is discussed in detail in § 2.4.3.

Rules and Initial Assignments

A rule is a way to transform the value of one variable to another. When a rule is defined

for a symbol, that symbol is treated instead as a mathematical expression which defines

the value of a symbol in terms of other symbols, or defines the rate of change of a variable.

Any evaluatable symbol in SBML may be defined by rules, including floating and boundary

species. The caveat here is that if a species is defined by a rule, it may no longer be produced

or consumed in the chemical reaction network.

SBML supports three kinds of rules: assignment, rate and algebraic. Algebraic rules

define a system of implicit equations and are not supported by many SBML simulators

including RoadRunner. Assignment rules operate similarly to a macro expansion in C++, or

almost identically to transformation rules in Mathematica. In Mathematica, a replacement

rule is defined with the arrow operator, → and applied with the replacement operator /.,

so the expression x+ y/.x→ 3 evaluates to 3 + y.

In SBML, one may define a set of SBML assignment rules (using Mathematica syntax)
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as

C → 1 +X (2.1)

A→ B + 2 (2.2)

D → A+ C (2.3)

P → C +A+D. (2.4)

If an expression requests the symbol P , it will see that the symbol is defined by a replacement

rule, which in turn gets evaluated. Here the C gets replaced by 1 +X, the A gets replaced

by B+ 2 and D gets replaced by A+C. The A and C are not terminals, they get replaced

by B + 2 and 1 +X respectively. The only restriction is that rules cannot have a loop. So,

starting with P , we have:

P = C +A+D (2.5)

P = (1 +X) + (B + 2) + (A+ C) (2.6)

P = (1 +X) + (B + 2) + ((B + 2) + (1 +X)) (2.7)

(2.8)

Finally, we end up with an expression of constants and terminal symbols.

Algebraic rules in SBML also have scoping rules. The left hand side (LHS) of a rule will

evaluate to a different result if the rule is evaluated inside a reaction block where there are

local parameters that override the global symbol names, or at time < 0 where there may

be initial assignment rules in play.

Initial assignments are just algebraic rules which are only in effect at time < 0.

Reactions

SBML was first developed to describe a reaction kinetic model. The first release of SBML,

Level 1 [45] did not contain events or rate rules, thus it could only be used to describe

systems in terms of a reaction kinetics model. Even though the present version of SBML

can describe much more, the reaction kinetic model is still the predominant use of SBML.
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A reaction specifies the transformation of a number of chemical species (reactants) into

number of new species (products) at a specified rate.

In a reaction kinetics network, a network of m chemical species and n reactions can

be described by the m by n stoichiometry matrix N. Ni,j is the net number of species i

produced or consumed in reaction j. The dynamics of the network are described by

d

dt
S(t) = N(t) · ν(S(t),p), (2.9)

where S is the vector of species concentrations, p is a vector of time independent parameters,

t is time, and ν is the reaction rate function.

SBML allows one to define a list of reactions, and each reaction has a list of products,

reactants and an arbitrary mathematical expression which specifies the reaction rate. The

generation of eqn. 2.9 is discussed in § 2.4.3.

Events

Events are discontinuous state changes which are applied when a predefined condition is

met. Formally, events map the model state to a new state when a predicate evaluates to

true,

{S→ S′|P (x)} (2.10)

See § 2.4.3

SBML Computational Model

SBML does contain numerous other elements, such as constraint or layout information,

but these ancillary elements do not affect how the model is generated. The above set of

SBML constructs allows the definition of an initial value problem (IVP). Formally, this IVP

problem may be written as

S(t) =
∑
E

∫ ti+1

ti

Ṡ(pi, t)dt. (2.11)
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Here, the summation is over the set of events, and the integration proceeds from the time

at which the previous event was triggered (or time 0) up to the next event trigger time (or

a pre-specified halting time).

It is the role of the SBML compiler to extract and infer semantic meaning from this set

of constructs in order to generate executable machine code with which this IVP is evaluated.

The SBML provides sufficient information to generate a function which yields the rate of

change of the entire state vector as well as the predicates and assignment rules for the set

of events.

Then finally, it is the role of the SBML simulation engine to combine the generated rate

of change and the event function from the compiler with an integrator, yielding S(t), the

state vector at time t. Extensive details of the SBML compiler are provided in § 2.4.

These SBML constructs do not explicitly define how the state vector rate and event

functions are to be generated as they do in a procedural programming language. Rather,

the compiler gathers information from all of the SBML elements to infer how to generate

these functions.

In this sense, SBML can be thought of as more of a declarative rather than a procedu-

ral language. In a declarative language, the programmer must explicitly define the exact

computation to be performed. The compiler of a declarative language must infer seman-

tic meaning from a set of potentially disjointed information. In a procedural language,

however, the onus is on the programmer to explicitly define the exact computation to be

performed. The task of compiling a procedural language is typically much simpler than

compiling a declarative language, as a procedural language places more of the burden for

explicitly defining the computation on the programmer rather than the compiler.

Many commonly used programming languages such as C++, Java, MATLAB, Python,

and so forth are considered imperative languages. In an imperative language, one writes

a sequence of operations that describe in exacting detail how to perform a calculation.

Although C++, Java and Python may also be considered object oriented (OO) languages,

this is more a description of how the code is structured than how the computation is

specified. In OO languages, data and logic are grouped together into “objects” whereas in

more procedural languages such as MATLAB or C the logic is organized into procedures

20



that operate on data. Nonetheless, these are organizational differences that do not alter

the imperative nature of these languages, which is a sequence of operations that explicitly

specify the computational algorithm.

On the other hand, in declarative languages like Mathematica or Prolog one defines a

program by specifying the logic of a computation rather than specifying the control flow. In

this sense, SBML may considered a declarative language, as only elements and relationships

need to be specified.

Declarative languages pose challenges for compiler developers. In procedural languages,

explicit details are provided in the source language of how the perform a computation. The

compiler then has a comparatively easier job, in that it just has to determine what is the

optimal way of implementing this computation on the hardware at hand. In declarative

languages on the other hand, such explicit details are provided. The compiler needs to de-

termine how to assemble all of the provided information into a description of a computation

and then carry out the details of implementing this computation on the hardware.

Take for example the SBML assignment rules. These rules may be specified in any order

and the order in which they are defined should have no bearing on the outcome. One may

define an assignment rule in SBML as A → B + C, meaning that whenever the symbol A

is encountered, it is evaluates to the expression B+C. We may also have the rule B → 10,

meaning the symbol B always evaluates to the literal 10.

The fact that rules may be expressed in any order poses some challenges to software

that must interpret declarative statements. In this example, it should be clear that the

rule B → 10 should be evaluated before A → B + C. Other SBML engines such as

SBW [9] introduce state variables for each intermediate rule evaluation, and a number

of synchronization functions which are regularly called to synchronize the state of all the

intermediate evaluations at run time. LibRoadRunner on the other hand resolves all rules

at compile time so there are never any synchronization issues and there are never any

redundant intermediate state variables.
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2.3 Architecture

2.3.1 Design Goals

LibRoadRunner is a library designed from the start to be used in existing simulation envi-

ronments. It is designed to provide a lightweight, self contained, easily embedded simulation

package which provided a modern, well documented API which is natively accessible in C++

or Python, and we can easily add native bindings to many other languages supported by

SWIG [8], including the upcoming support for JavaScript using either the Google V8 or Ap-

ple Web-Kit JavaScript runtimes. In addition we support a Systems Biology Workbench [9]

(SBW) compatibility C API.

A number of other software packages exist which are capable of producing time series

simulations of SBML models. COPASI [44] is a mature and well established program

which in our testing provides better performance that the other SBML packages. It is

also very feature rich. Even though COPASI may be used as a library, it appears to be

more focused on being a desktop application rather than a library. The COPASI API

is, compared to RoadRunner more difficult to use in that it is significantly more verbose,

and is not well suited for interactive use. Interactive simulation and data analysis can be

extremely productive and is a key feature of environments such as MATLAB, Mathematica,

R or Python. In such an environment, users interactively enter commands or functions at

a command prompt and these are used to perform calculations. To function well in an

interactive environment, an API should not require a user to enter long code blocks, it

should provide a rich set commands or functions, coupled with a range of options which

can be entered rapidly in a single command line. A wide range of applications function well

in interactive environments in addition to the aforementioned MATLAB or Mathematica.

These include any of the UNIX command interpreters, TCL, or even the MS-DOS command

prompt.

The LibRoadRunner API is designed to be used in interactive environment in addition

to being embedded in existing applications. The API is designed to have the same style as

the Python SciPy package. For example, to run a simple time course simulation requires

over a 100 lines of code using the COPASI Python API [21]. A time course simulation can
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be performed using the LibRoadRunner library in Python with only two lines of code:

r = RoadRunner(‘‘myfile.xml’’)

s = r.simulate ()

here s is numpy array in Python, or a matrix object in C++. In Python, this array may be

given directly to matplotlib to be plotted. This example runs a time series using the default

time span and automatically selects the default selections as the set of floating species. All

of the simulation parameters may be specified as optional arguments, for example, to run a

time course simulations with a time space from t = 0→ 12, 100 data points, and outputting

time series for the parameter “P1” and the concentration of species “S1”, one would run:

r = RoadRunner(‘‘myfile.xml’’)

s = r.simulate(0, 10, 100, sel=[’time’, ’P’, ’[S1]’], plot=True)

This example also uses the optional “plot” argument which automatically invokes matplotlib

to plot the time series result.

The Systems Biology Simulation Core Algorithm [47], which we abbreviate as (TSBSCA)

is a Java SBML simulation package which is comparable to RoadRunner as does have a

cleanly designed and well structured API and has a modern and well architected internal

design. The code is easy to read, understand and extend. TSBSCA does however have a

confusing name, its unclear from the name of what it actually does (though that criticism can

be applied equally well to the LibRoadRunner library). More fundamentally, TSBSCA is

written in Java which may be ideal for other Java packages, but is not very practical to use in

C++ or Python programs, in which most scientific software is developed. libSBMLSim [76]

is a library written in C with an unusual coding style, however it has a limited API, only

allowing loading of SBML models, and writing a result time series file. SOSLib is another

library in the style of libSBMLSim, but it does not appear to be actively maintained, quoting

from their web site as of March 5, 2014, “please note that we currently do not have much

time to actively work on SOSLib” [72].
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2.3.2 Component Based Design

The libRoadRunner is built on a component based design. All major components interact

with each other via pure virtual interfaces. There is a strict separation between interfaces

and concrete implementations of these interfaces. This allows us to have multiple imple-

mentations of the same interface. Most objects are created via factory objects. Here, only

the factory object needs to be aware of the concrete object types. One of the primary

advantages of such a design is that it allows us to have pluggable components.

Logically, we have made a strict separation between the object representing the state of

the system, the ExecutableModel interact, and the object responsible for time evolution of

the state, the Integrator object. In other words, the time evolution of phase space vector

Γ(t) is the result of the classical propagator [77] acting on the initial state, Γ(0) as

Γ(t) = eiLtΓ(0). (2.12)

Here, the phase space vector Γ is the state of the system. This is defined entirely by the

source SBML document, and eiLt is the classical propagator which advances the system in

time. There are many ways of defining how a state is implemented and how a propagator

acts on that state.

In libRoadRunner the state of the system is represented by the ExecutableModel in-

terface, and the propagator is represented by the Integrator interface.

The ExecutableModel interface currently has two implementations: (1) a JIT compiler

which directly JIT compiles source SBML documents in memory via Low-Level Virtual

Machine (LLVM) (see below), and (2) a procedure (written originally by Frank Bergman

and later transliterated into C++ by Totte Karlsson) which takes an SBML document and

applies a series of textual transforms to generate a C language source code file. This file is

then written to disk and an external C compiler is called, which in turn generates a shared

library. This shared library is then loaded.

The Integrator interface is currently currently implemented by a number of integrators.

Stochastic integration is supported by an integrator which implements the Gillespie SSA

algorithm which is described in further detail in Chapter 4. Deterministic integration is
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supported by either simple Runge-Kutta fourth order integrator, or an very capable CVODE

integrator which uses the CVODE integrator from the Sundials suite [42]. The CVODE

integrator performs the temporal evolution via a number of variable-order, variable time-

step methods. Non-stiff systems are evolved via the Adams-Moulton formula, using and

order between 1 and 12. Stiff systems are evolved using the backward differentiation formula.

We are currently developing a stochastic integrator based on the Gillespie algorithm, and are

also investigating an LSODA based deterministic integrator. A variety of other methods

may be investigated, such as splitting the Liouville operator L to develop a multi-scale

propagator-based integrator. All of these approaches may be investigated with no changes to

any existing RoadRunner code as the entirety of the temporal evolution system is contained

completely behind the Integrator interface.

LibRoadRunner has a simple yet very capable object oriented public API, accessible

via C++ or Python and consisting of two public interfaces and three or four configuration

parameter structures. All functionality, including model loading, simulation and model

variable access and analysis is available via this pair of interfaces. We expect most users to

use the Python API. LibRoadRunner is available as a single self-contained Python package

with extensive documentation available online at http://libroadrunner.org or interactively

via standard Python doc-strings.

The LibRoadRunner API has two primary design goals, (1) to provide a rich interactive

user experience when used in an interactive environment such as Python, and (2) to allow

libRoadRunner to be readily used in existing applications and simulation environments.

The API was developed in close collaboration with application developers [75].

Both the C++ and Python APIs interact via standard data structures. The C++ API

uses only standard library data structures - i.e., std::vector<std::string> - or standard

arrays of double precision numbers. The Python API exclusively uses standard Python lists,

strings and numpy arrays for numeric data. All numpy arrays returned by libRoadRunner

are thin wrappers around libRoadRunner owned memory; thus, there is no copying of any

large memory blocks. For example, the matrix returned by the simulate method may

be very large, and it would be wasteful to make copies of it. As the Python API uses

standard numpy arrays, one may use libRoadRunner directly with the huge number of
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existing Python numeric and scientific libraries.

2.4 SBML Language Compilation

The goal of the SBML language compiler is to generate a data structure which contains all

and only the required model state variables, and a series of machine executable functions

which can calculate the rate of change of the state vector, allow access to the model variables

and implement the set of SBML events.

To our knowledge, no other available SBML engine is capable of direct JIT compilation,

and JIT compilers for declarative language are rare. Most existing SBML engines either

have built-in interpreters as in the case of COPASI [44] or The systems biology simulation

core algorithm [47], or macro expansion systems which apply a set of textual replacements

to generate a source code file in a language for which a compiler exists such as C or Java as

in the case of the Systems Biology Workbench [9]. There was however a system developed

by Ackermann et. all. [1] which was capable of generating CUDA code from SBML and

executing it on an nVidia GPU. This system appears to be very limited as it appears to

only handle systems which consist of only rate equations (no events or rules), and there is

no available source code or binary, and it appears to be only capable of accepting SBML

rate rules, and is limited to eight state variables.

A Just In Time (JIT) compiler is a routine which which takes the source code description

of a computational process and performs in-memory translation into machine executable

routines immediately before they are required for use. In contrast, an interpreter either

directly executes the source code program (though it frequently generates a more efficient

in-memory representation). In an interpreter, each time a statement is run, a considerable

amount of logic must take place to determine the exact form and intended operation of the

statement. Interpreters are typically 50-100 times slower [50] than native executable code.

Systems such as the SBW [9] convert a SBML file into a C# file through a series of

textual transforms and macro expansions. It then uses an external compiler to generate

a shared library which then finally contains a set of native machine executable functions.

Such macro systems are not considered a true compiler, rather it is more of “a cousin of a
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compiler”, the preprocessor, (see sec 1.4, [2]) which produces input to compilers. Prepro-

cessors may be capable of limited computation such as arithmetic or logic operations, but

their primary purpose is take a source document, perform some transforms or expansions

and prepare input for compiler. Some other examples of preprocessors are the C prepro-

cessor, the Qt MOC (meta object compiler) or the current crop of languages built on top

of JavaScript such as Coffee Script. Source code translation or pre-processor systems are

typically slower than a JIT compiler for a number of reasons such as they have to access

the file system which is an order of magnitude slower then in-memory operations and they

are calling a general purpose compiler which accepts language considerably more complex

than SBML and as such, can take considerable time to run.

At its simplest level, SBML is a language for describing a system of ordinary differential

equation (ODEs) in the form of

d

dt
S(t) =

 Ṡf

Ṡr

 =

 N(t) · ν(S(t),p)

f(S(t),p)

 , (2.13)

where S is the total state vector of the system from eqn. 2.11. The state vector is partitioned

into two vectors, Sf is the vector of independent floating species which participate in a

reaction network, and Sr is a vector of variables which are defined by rate rules. The vector

p consists of time independent parameters.

The chemical reaction network of m chemical species and n reactions can be described

by the m × n, potentially time-dependent stoichiometry matrix N(t). Each stoichiometric

element, Ni,j is the net number of species i produced or consumed in reaction j, and

ν(S(t),p) is the function yielding the length n vector of reaction velocities.

The second part of the state vector, Sr is a set of variables which form a system of

conventional ODEs, i.e. each element in this vector is defined by an SBML rate rule. Any

SBML element including floating species may be defined by rate rules. When a floating

species is defined by a rate rule, we no longer consider it an independent floating species as

it is not defined by a set of reactions. In this sense, floating species defined by rate rules

behave semantically more similarly to boundary species rather than floating species.
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In order to generate the full time evolution of the state vector (2.11), integration needs

to be partitioned into a finite set of discrete time intervals which are determined by the set

of events. The state vector rate and event functions in turn are native machine executable

functions which are generated just in time (JIT) by the SBML compiler. The following sec-

tion is very high level overview of compiler design. Those already familiar or not interested

in compiler design may skip ahead to section § 2.4.3.

2.4.1 Overview

The process of loading, compiling and simulating an SBML model is partitioned between

the following classes shown in fig. 2.1. The RoadRunner is the top level class which provides

a facade and manages the interaction of other child classes. The ModelGenerator is where

all the JIT compilation takes place. This class generates an ExecutableModel class which

contains all of the JITed code as well as a buffer which holds the state vector, initial

conditions and other model meta data. The Integrator class queries the ExecutableModel

for the state vector rate and performs the time evolution of the system. 4/15/14 7:05 PM

Page 1 of 1file:///Users/andy/Desktop/DefaultName.svg

RoadRunner

load(string)
simulate(SimulateOptions)
integrate(double,double,SimulateOptions)

ExecutableModel

getStateVectorRate(double,double*,double*)
getEventRoots(double,double*,double*)
getValue(string)

Integrator

integrate(double,double)
restart()
setSimulateOptions(SimulateOptions)

<<datatype>>
string

<<javaclass>> null

<<datatype>>
double

<<javaclass>> null

<<datatype>>
double*

<<javaclass>> null

<<datatype>>
SimulateOptions

<<javaclass>> null

ModelGenerator

createModel(string,uint)

<<datatype>>
uint

<<javaclass>> null

0..1

0..1

0..1

0..1

Figure 2.1: A simplified UML diagram of the key objects involved in SBML JIT compilation
and simulation.

2.4.2 Compiler Design Overview and LLVM Details

A compiler is a computational procedure for translating a source document, typically in

human readable text into executable machine code. The phases most compilers execute
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are: (1) lexical (2) syntactic, (3) semantic (4) intermediate code generation, (5), code

optimizer, and (6) native code generator. Phases 1 through 4 are the analysis phase. Here,

the source code is separated into parts and then arranged into a meaningful structure (or

grammar of the language). Stages 5 through 6 are the synthesis phases. It is here that the

actual executable machine code is generated.

The initial and final stages of compilation are fairly well defined, generalizable and many

excellent libraries exist for performing these tasks, so they will not be covered in any detail

here. The medial stage, semantic analysis, is however very specialized to the programming

language which is being compiled. This stage will be covered in detail in the following

sections.

In the lexical and syntactic analysis phases, a sequence of characters in the source

program are categorized and grouped into sequences called lexemes. For each lexeme, an

abstract symbol called a token is produced. Lexical analysis is concerned with syntax and

other things. The result of the lexical analysis phase is typically a parse tree. The semantic

analysis is concerned with the meaning of the source program. This is where the meaning

of the source program is determined and a form suitable for machine???

There are many well defined packages for dealing with the lexical and syntactic analysis

phases. If the source file is in textual source format, it one may specify the BNF grammar

and use a program like Yacc, Bison [23] or ANTLR [60] to automate the generation of a

syntax analyzer. As SBML is XML, it can be thought of as a textual encoding of a parse tree.

Therefore, the syntactic rules are much smaller than a typical programming language. The

the libSBML [13] library is used to perform the entire lexical analysis phase. The libSBML

library provides a DOM (document object model) data structure which is in effect, a parse

tree and is comparable to the parse tree data structures provided by parser generators such

as ANTLR. The result of the syntactic analysis phase is typically an abstract syntax tree or

AST.

The AST is a data structure which contains the essential semantic information which is

required by the later stages if a compiler (semantic analysis, code generation) from a source

program. An AST is abstract in the sense that it does not contain all of the information

in the source program, all of the semantically irrelevant information has been removes such
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as whitespace, comments, parenthesis, etc... Each node in the AST represents an essential

construct such as operators, symbols, literals, function application, etc... An example of

source language string and the corresponding AST are depicted in Table 2.1.

Infix MathML AST

x + 2 + (y * 5)

<math>

<apply >

<plus/>

<ci>x</ci>

<cn>2<cn>

<apply >

<times/>

<ci>y</ci>

<cn>5</cn>

</apply >

</apply >

</math>

+

x 2 *

y 5

Table 2.1: A mathematical expression expressed as infix notation, MathML notation and as
an AST.

In the final stages of the compilation process the intermediate representation is optimized

and finally turned into executable machine code, the LLVM library is used to perform this

task. LLVM can produce executable code for a variety of architectures; of particular interest

is GPU format.

LLVM Intermediate Code Representation

The LLVM intermediate representation (IR) is an single static assignment or SSA language.

This states that each variable may be assigned exactly once, there can be no storing of any

value in an existing variable. Any new calculated value must be stored in a new variable.

In contrast, Java byte-code Microsoft IR used in the .net platform are both stack based

intermediate languages.

2.4.3 Implementation of SBML Language features

In a procedural language, each symbol almost invariably corresponds to a single particular

location in memory, be it a variable or a function. This mapping of language symbols to

memory locations is typically handled with data structure known as a symbol table. One
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may use multiple symbol tables, such as when function with local variables. Here, when

the compiler generates code for a function, a new symbol table is creates which holds the

set of local variables. The compiler first looks in this local set to resolve a symbol, then in

the global table. This approach can be extended further, such as in Pascal which supports

nested scoping. Here, function can be defined inside other functions, and symbol resolution

proceeds from local to a chain of parent functions then finally to the global scope.

The conventional symbol table approach becomes problematic when dealing with declar-

ative languages. In SBML, symbols are often defined by rules and symbol resolution is con-

text dependent. A symbol may resolve to different values if it is evaluated before or after

time = 0, and if it is used inside a reaction with local parameters. Completely different sets

of rules may be in play depending on the model time of evaluation.

One approach would have been to simply allocate storage space for all symbols. This

however would be wasteful in terms of memory usage and would result in significantly more

complex and error prone code at run time. The would require numerous other functions to

to evaluate rules and store their results before they are used.

The approach taken here is an extension of the symbol table which we refer to as a symbol

forest. This is a hash table which maps symbol names to ASTs. In effect, this contains

all the un-evaluated rules. These rules are resolved and evaluated when they are called.

Thus, this is a form of lazy evaluation. This approach allows us to only allocate storage

for terminal nodes and never requires any updating of intermediate variables. Everything

is evaluated in-line. One may be concerned that this approach might incur redundant

evaluations, but the LLVM optimization passes eliminate redundant operations.

Only terminal symbols (symbols not defined by assignment rules), reaction rates, stoi-

chiometric coefficient and initial conditions are allocated storage. All variables are stored

in a single contiguous memory block. This approach allows us to compute the offset of each

variable at JIT compile time and results in fewer memory accesses. If each type of variable

were stored in a separate dynamically allocated array, it would have incurred an additional

an additional memory access for each variable reference, and the resulting code would have

more difficult to optimize for the LLVM optimizer passes.

Terminal symbols are accessed via a pair of pure virtual interfaces, LoadSymbolResolver,
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and StoreSymbolResolver. These pair of interfaces are our equivalent to the traditional

symbol table, these map a symbol to either a load or store instruction. Each of these resolver

interfaces have a number of concrete implementations to accommodate the various SBML

scoping rules. Resolvers can also be chained, e.g. A FunctionResolver resolves symbols

to function arguments, and this is chained to a parent resolver which may be from a calling

function, or somewhere up the scoping stack, until finally all symbols must be resolved at

the terminal resolvers such as the ModelDataLoadSymbolResolver which maps symbols to

locations in the state vector.

Storing the entire model (and consequently the entire state vector) as a single contiguous

memory block also allows significant performance optimizations when interacting with the

integrator. The integrator calls the getStateVectorRate function. This function calculates

the rate of change of the state vector as a function of the state vector. This function does

not need to copy any memory, it only needs to swap out a pair of pointers specifying the

base address of the state vector and state vector rate. The memory layout is exactly the

same as what the integrator expects: a single contiguous array of state vector variables.

Species, Compartments, and Parameters

In SBML, variables may be species, compartments or parameters. Compartments and

parameters which are terminal symbols are treated as conventional variables in a procedu-

ral language: they are allocated a region of memory and may be written or read from this

location. Species have a different semantic meaning. Species may be treated as either a con-

centration (amount/volume), or an an amount. Our implementation only stores amounts,

concentration are never stored in memory. Whenever a species symbol is evaluated, and it is

determined that this is a concentration type, the generated code automatically divides the

amount by the compartment volume in-line. Similarly, whenever a species is to be stored,

the generated code automatically converts any concentration store into an amount store

operation.

Such a lazy evaluation approach ensures that there are never any synchronization issues

with variable compartment volumes and concentrations.
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Rules and Initial Assignments

Assignment rules are expanded incline during code generation process walking of the AST.

When a symbol is dereferenced, it is first looked up in the symbol forest. If this symbol turns

out to be a terminal symbol (not defined by an assignment rule), then that symbol ends up

as being mapped to particular location in the state vector and load or store instruction is

emitted. If however this symbol has an assignment rule, then the symbol forest returns the

root of the assignment rule, and the code generation continues here.

If a symbol is defined by an assignment rule, then it is never allocated any space in the

state vector. It is an error to attempt to set the value of symbol specified by an assignment

rule.

Initial assignment are handled almost identically, the only difference being that the

terminal symbols map to different memory locations. All initial condition values are actually

stored in a different location that the state vector, as a call to reset sets the state vector

variables to the values specified by the initial conditions.

Functions

Functions in SBML have peculiar behavior. In the SBML specification, it is stated that

functions are intended to act as “macro expansions”. This has the implication that any

symbol referenced in the function body must be resolved to variable one level up the call

stack. Therefore, SBML functions are dynamically scoped. Note, even though the speci-

fication states that the only symbols available in a function are those that are explicitly

passed in, frequently one encounters SBML with symbol references which are not resolved

to function scope. Many other SBML engines gladly accept these functions, as they simply,

as the specification states, expand the function as a macro.

Reactions

Simulation of reaction kinetics networks is one of the primary uses of SBML. In order to

calculate the time course of the reaction network portion of the state vector, (2.13), we must

first specify how the stoichiometry matrix is stored, generate a function which calculates
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the reaction rate vector, and perform the matrix vector product.

The SBML JIT compiler generates a getStateVectorRates function which is called

by the integrator. The is the most frequently called routine in all of libRoadRunner so

performance in critical. This function receives a pointer to the current state vector, the

address of all SBML symbols is known at compile time and is a fixed offset from the base

address of the state vector, and the resulting state vector rate values are written directly

into a memory block owned by the integrator. This, there is no copying of any memory

during this call.

The SBML JIT compiler also generates a getReactionRates function which implements

the ν function in (2.13). The resulting vector is stored in a memory block.

As the stoichiometry matrix N is typically extremely sparse, it is stored in compressed

sparse row (CSR) form. Thus the matrix vector can be calculated in O(nz×n) time, where

nz is the number of non-zero elements and n is the number of reactions instead of O(m×n),

where m is the number of chemical species.

During the course of the matrix-vector product, each stoichiometric coefficient must be

accesses n times, thus it is read typically much more often that it needs to be written, even

in the case of time dependent stoichiometries. When any SBML expression (rate rules or

events) change the value of time dependent stoichiometries, the symbol forest maps this

SBML symbol to the appropriate location in the CSR matrix. The CSR matrix vector

product is highly optimized as in the course of our testing, nearly 30 % of the time spent

calculating the state vector rate is spent here. The result of the CSR matrix vector product

is calculated directly into the output buffer which is owned by the integrator.

Events

An SBML model may contain a collection of events. An event in SBML is an object which

consists of the following: 1) a predicate whose variables may be any symbol in the model,

2) a set of instantaneous, discontinuous model state changes which are applied at some

time (may be zero) after the predicate evaluates to true, 3) a delay function which calcu-

lates the time span between event trigger time and event application time, 4) a priority

function which calculates the event priority, and 5) a pair of static boolean attributes:
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useValuesFromTriggerTime and persistent. All event functions are functions of the model

state. The useValuesFromTriggerTime attribute indicates that the assignment rules should

be evaluated at the moment the event is triggered. Thus, if this attribute is set in our imple-

mentation, the event object also contains a data block where the results of the assignment

rules are stored whilst the event is in the triggered state.

An event may be in one of three states: 1) Inactive, 2) Triggered, or 3) Assigning, as

depicted in Figure 2.2. Events transition from the inactive to the triggered state at the

moment the predicate evaluates to true. This is referred to as triggering the event. Events

may also transition from triggered to inactive if their predicate evaluates to false and they

are not persistent. Events transition from triggered to assigning once their application time

(triggered time + delay time) elapses and their predicate is still true. Events in the assigning

state perform the model state changes and transition back to the inactive state.

Triggered

Inactive Assigning

P (x)! true

P (x)! false

persistent = false

time! expired

persistent = true

P (x) = true

Figure 2.2: A state diagram of the events system

When the SBML model is loaded, the predicates, assignment rules, priority and delay

functions for each event are JIT compiled and a function pointer to each one of these is

retained.

During the integration process, the integrator asks if any events have been triggered.

If any event predicates change state, the integrator performs a root finding process to

determine the exact moment an event was triggered. This is required as the integrator may

be taking large time steps and all that is known is that the event predicate was false at the

beginning of the time step and transitioned to true at the end of the time step. An event

is inserted into a priority queue at the moment it is triggered. The priority queue is sorted
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first on the time span between the present time and the time at which the event is to be

assigned, second on the event’s priority.

If any event predicates change state, any expired events are removed from the priority

queue, and any ripe events are applied and removed from the queue. Ripe events are those

which are ready to be assigned – whose application time has passed and are still active

(either their persistent attribute is set, or their predicate is true). The assigning of an event

by definition incurs a model state change. This state change may trigger new events, and

may cause existing events to expire. Therefore, the application of events must be performed

iteratively. On each iteration, expired events are first removed. As the priority queue is

sorted first on time until the event is to be assigned, only the top most events will have

the time to assignment as zero, therefore, only the top most events may be ripe. The set

of ripe events with equal priority and assignment time are then removed from the queue,

and applied in random order. The assignment of ripe events in random order is needed

to comply with the SBML specification. All events are then scanned and any events that

are triggered as a result of the previous event application are inserted into the queue. The

iteration continues until there are no more ripe events. Once all ripe events have been

assigned, the integrator can continue normally until the next event is triggered or the total

simulation time span is complete.

SBML Events Performance Aspects

The processing of SBML events is currently one of the most time consuming calculations

in RoadRunner. Most tests in the SBML test suite take on average approximately 0.01

seconds (on a 2.66 GHz Mac Pro), whereas the longest test, number 966 takes 1.9 seconds.

A performance breakdown is in Table 2.2.

The CVODE root-finding system, which uses the Illinois algorithm, a modified secant

method [24, 41] is currently used to find the event trigger zero crossings. This algorithm

is well suited for smooth functions, however it can converge very slowly for functions with

discontinuous zero crossings, as is the case with our event root function.

Whilst the more sophisticated root finding methods such as secant or false-position
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method % time % self time

integrate 96 13
cvodeRootFind 70 53
rootFindCallback 17 17
applyEvents 10.5 10.5
getEventRoots 8 8
read and JIT compile SBML 2.3 2.3
integrateCallback 0.6 0.6

Table 2.2: Percent of total time and self time spent in various methods. The total time
includes all the time spent in child methods. Most of these are aggregate values in that the
CVODE integrate method call numerous other methods such as linear algebra routines. All of
these are are considered contributors to the self time.

typically perform better than the bisection method in general, their performance may be

worse in certain cases cases, e.g., when the slope of the function changes rapidly (or in the

extreme case, is discontinuous) around the root. Furthermore, these more sophisticated

methods are more complex to implement than the bisection method and considerable time

may be spent here, as evidenced in Table 2.2. Therefore, in future versions, a root finding

system based on the bisection method which should yield significant performance increases.

Code Generation

Accessor Functions

As mentioned earlier, RoadRunner only stores independent state variables. However, all

SBML symbols are accessible trough the public API. All symbols are access through a set of

generated accessor functions, and all rules are evaluated when the functions are generated.

2.5 Results

2.5.1 Performance

To demonstrate the capabilities of libRoadRunner we compared it to three simulator li-

braries: libSBMLSim, COPASI and SBSCL using a variety of standard and contrived mod-

els.

In our testing, we have found performance to be highly compiler and machine specific.

The Linux binaries that we provide are purposely compiled on a very conservative platform,
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(RHEL5, GCC 4.4, with processor optimizations set to Intel Core2 level). This binary

however performs 30% when running the SBML test suite than a binary compiled with

GCC 4.8.1 on an 3.0 GHz Intel Core2 Quad Ubuntu 13.10 machine even when set to the

same optimization level when running the the same hardware platform. At this point, it is

unclear if this performance discrepancy is due to compiler differences, or library differences

(the binary compiled on the older machine will still reference older symbols even when

running on a newer hardware platform). Test suite performance is highly I.O. bound: when

run from a clean boot, with no cached files, the test SBML test suite completes in ≈ 30−40

seconds, whereas subsequent tests (after the operating system has cached the input files)

complete in ≈ 11.5 seconds.

We purposely did not compare total run times of the SBML test suite for the different

simulator libraries as all of them operate on a different set of tests (COPASI and LibRoad-

Runner operate each on a different subset and LibSBMLSim and SBSCL operate on all

tests). Also note the tests performed here were done with binary distributions of LibS-

BMLSim and SBSCL, we are unaware of what compiler was used to build them. LibRoad-

Runner does however pass the SBML test suite tests without delay equations, algebraic

rules, and completes all 1016 at current count of these tests including result validation in

≈ 11.5 seconds on a 3.0 GHz Intel Core2 Quad Ubuntu 13.10 machine, using a single core.

Most of the tests performed here are far more a test of the integrator rather than the

SBML library. In LibRoadRunner only ≈ 1− 4% of the total time is actually spent in the

JIT compiled code evaluating the state vector rate of change. When running very short

simulations such as the SBML test suite, ≈ 50− 60% is typically spent in reading, parsing

and JIT compiling the model, reading and parsing are performed by LibSBML and the

JIT compilation is performed by our JIT compiler. Finally, depending on the length of

the simulations, ≈ 30 − 60% of the total time is typically spent in CVODE, this fraction

of total time is much larger when using the CVODE stiff (implicit backwards difference)

solver. For very long simulations, the fraction of time spent in CVODE will tend ≈ 90%. In

such cases, the remaining fraction is consumed by selecting output variables, state vector

rate evaluations and various overhead. We do not have a performance breakdown of the

other libraries as we are un-familiar with their internal code structure
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LibRoadRunner uses the CVODE solver (version 2.5.0 at time of publication) for inte-

grating deterministic systems. We support both the Adams-Moulton method for non-stiff

systems, and the Backward Differentiation method for stiff systems. In both cases, an im-

plicit system of the form 0 = yn − (· · · )f(tn, y
n) − an must be solved. Non-stiff systems

are solved with functional iteration, whereas stiff systems are solved with Newton iteration.

LibRoadRunner offers a flag which can be set before an integration time step is performed

to switch between stiff and non-stiff systems (or even different integrators). COPASI on

the other hand uses the LSODA [61] solver, which automatically switches between non-stiff

and stiff methods dynamically depending depending on the system behavior. All tests were

performed using both stiff and non-stiff LibRoadRunner solvers.

All tests were prepared in SBML test suite format, with each SBML model having an

accompanying settings text description file. These are available from our GIT repository.

LibRoadRunner, COPASI and SBSCL natively support the SBML test suite format.

All test times were recorded using the ‘‘real’’ value from UNIX time command. In or-

der to compare against COPASI, we used the ‘‘rr-sbml-benchmark’’ program which was

created to have the identical command line argument signature to COPASI’s sbml-testsuite

program. The SBSCL times were measured by timing the command ‘‘java -cp \

$SBSCL/SimulationCoreLibrary v1.3 incl-libs src.jar \

org.simulator.SBMLTestSuiteRunner $SIMDIR $NTEST $NTEST’’, where 64 bit Java ver-

sion 1.6.0 65 was used. A shell script was written which parses the SBML settings file and

prepares the appropriate command line arguments to the LibSBMLSim ‘‘simulateSBML’’

program, which was used for the LibSBMLSim timings. LibSBMLSim was run using the

Runge Kutta Fehlberg (RKF) integrator, which is what appears to be used in the LibS-

BMLSim ‘‘runall.sh’’ script to run the SBML test suite. This is explicit finite difference

scheme capable of adaptive time stepping. According the SBSCL Java Documentation, SB-

SCL uses a Rosenbrock method based solver. The Rosenbrock method is an adaptive,

semi-implicit, multi-stage method. In a sense, it is similar to the RKF method used in

LibSBMLSim in that it is a generalization of the Runge-Kutta method.

The first block of tests consist of a model prepared from N copies of the Brusselator

model, and a the piecewise model consists of the sin(t) function implemented as a 63 element
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piecewise MathML function. The piecewise models have parameter(s) defined by a rate rule,

and the rate of these parameters is the piecewise sin(t) function. The piecewise test was

specifically written to exercise the model state vector rate evaluations in the generated /

interpreted code. The Brusselator is a fairly simple, non-stiff oscillating system which is

discussed further in § 2.5.4. Each instance of the Brusselator model consists of four state

variables, e.g. the 500 model in Table 2.3 consists of 20, 000 state variables. This system

was written to test how well the SBML libraries cope with large systems. The timings are

the total wall time (‘‘real’’ value from the Unix ‘‘time’’ command) to complete each

process. Tests were run on a 2.6 GHz Mac Pro, OS X 10.6, and used COPASI v. 4.9.43,

libSBMLSim v. 1.1 and SBSCL v. 1.3. Note, we experienced instability of libSBMLSim

runs with >100 copies of the Brusselator system or complex SBML.

#
Bru

sse
lat

or
s

lib
Roa

dRunner
- std

lib
Roa

dRunner
- sti

ff

COPASI

lib
SBM

LSim

SBSCL

#
Rat

e Rules

lib
Roa

dRunner
- std

lib
Roa

dRunner
- sti

ff

COPASI

lib
SBM

LSim

SBSCL

50 0.5 0.8 0.9 12.2 13.0 1 1.60 1.84 12.3 N/A 2.4
100 0.9 2.3 3.8 50.5 46.1 2 2.14 2.61 24.1 N/A 13:20
150 1.1 4.4 7.2 N/A 1:52 3 2.71 3.68 35.2 N/A 39:52
200 1.9 7.2 13.2 N/A 3:51 4 3.39 4.83 46.5 N/A 1:32:32
250 2.6 11.1 21.8 N/A 8:37 5 4.20 6.48 58.4 N/A 3:04:21
300 3.3 15.6 30.1 N/A 14:09
350 3.9 21.5 46.3 N/A 21:11
400 4.7 28.6 55.7 N/A 33:35
450 5.6 36.3 1:14 N/A 48:12
500 6.6 44.5 1:35 N/A 1:14:21

Table 2.3: All times are in seconds. The first set of tests consisted ofN copies of the Brusselator
system in a single model. The second set was a sin function implemented as a 63 element
piecewise SBML functions combined with N parameters defined by rate rules integrating the
sin function. Test models are available at libRoadRunner.org.

The first set of results indicate that in the case of non-stiff systems, the RoadRunner non-

stiffs solver clearly scales linearly with system size and the stiff solver scales quadratically.

The Brusselator is a non-stiff periodic systems which causes the CVODE non-stiff solver

to operate in a fairly fixed time step regime, and here, this solver scales directly with

system size. Also, the generated LLVM stores the stoichiometric coefficients in compressed
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sparse row (CSR) format, the number of reactions is directly proportional to the system

size, and the CSR matrix-vector product is proportional to the number of non-zeros in the

stoichiometry matrix by the reaction rate vector size. Thus, the both the ODE solver, and

the state vector rate calculations scale directly with system size.

The stiff solver on the other hand scales quadratically with system size. Here, the state

vector rate calculation is still proportional to system size, however the backward difference

formula needs to solve a linear system, and this operation is scales quadratically with system

size.

The right hand block of Table 2.3 shows the results of the piecewise test. This model

specifically stresses the state vector rate evaluation code, as the system dynamics are pur-

posely designed to be non-stiff and to have simple behavior. As the RoadRunner state vector

rate is calculated with JIT compiled native x86-64 code, this function could have at most

63 BNE (branch on negative) instructions. The other SBML engines all use interpreters

which results in significantly longer run time.

Figure 2.3: Run time performace relative to system size for the multiple Brusselator system.

The second set of tests were the models used in the original SOSLib paper [56]. The

upper block in Table 2.4 was evaluated by us using the above testing procedure. The lower
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block is reproduced from the SOSLib web site located at [73]. This second set of data is

strictly here for the sake of completeness and should not be compared directly to the first

block, as we have no information on the test procedures or the type of hardware / operating

system, although we suspect that the original SOSLib tests were most likely performed on

a MS Windows computer as they test Jarnac which is a Windows only program.

The models uses in these series of tests had relatively few numbers of state variables,

were run for short duration, but were stiff. Models 9−33 correspond to the same numbered

models from BioModels database. The repressilator was downloaded directly from the

SOSLib web site at [71]. Models 9 through 22 have wildly varying initial transients, but

rapidly reach a steady state value.

model 9 14 22 33 repressilator

simulation time 150 300 2000 60 10e4
# state variables 22 86 28 10 6
absolute 1e-15 1.0e-4 1.0e-4 1.0e-4 1.0e-4
relative 1e-9 1.0e-9 1.0e-9 1.0e-9 1.0e-9
dynamics T / S T / S T / S oscil oscil / stiff
libRoadRunner - stiff 95 510 230 125 1,040
libRoadRunner - std 760 920 235 180 3,320
COPASI 200 1,980 510 250 1,600
SBSCL 1,700 6,950 25,300 2,200 98,000

2005 SOSLib Data *Not comparable to above data

absolute 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-14
relative 1.0e-9 1.0e-9 1.0e-9 1.0e-9 1.0e-9
Dizzy 1.11.1
ODEtoJava-dopr54-adaptive

15,499 12,711 2,634 19,350 6,369

Jarnac 2.16n 344 14,531 1,157 5,843 4,516
SBMLToolbox
MatlabR14SP3ode15s

188 920 302 5,554 6,681

COPASI 4.0 Build 15 156 4,062 109 1,437 500
SOSlib 1.6.0pre
from CVS, Nov. 17th 2005

234 515 171 562 1,062

Table 2.4: A listing of performance times from the BioModels models that were originally
used to test SOSLib. All times are in milliseconds.

This second sets of tests complete in very short amount of time. The short duration

of these tests would tend to give an advantage to interpreter based SBML engines and the

time for setting up an interpreter is typically faster than JIT compiling. The very short

nature of these tests would also tend to penalize Java based engines as there is a much
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longer program load time for Java vs native compiled programs.

Because of the stiff nature of these models, there is a significant advantage in using the

stiff implicit solver. Here, in order to achieve any numerical stability, the non-stiff solvers

end up using an extremely small time step which results in very long run times. The implicit

stiff solvers are unconditionally stable and can use larger time steps (at the cost of solving a

more complex problem), furthermore, the stiff solvers can better adapt time step size than

the non-stiff counterparts.

In summary, SBML run time performance is highly operating system, model and in-

tegrator specific. There is no single choice of integrator that is universally better. In Li-

bRoadRunner we have provided a default configuration which performs well with the SBML

test suite, however based on the type of model used, this may be inappropriate. Therefore,

our API makes it very simple to change integration behavior. All of the integration tuning

parameters, such as stiff vs non-stiff, error tolerance, internal integrator parameters such

as internal time step details, etc are all specifiable as either optional keyword arguments

to the python “RoadRunner.simulate“ method, or the default values may be specified in a

configuration file.

2.5.2 Analysis features

The LibRoadRunner library supports a wide range of analysis functions, these are described

briefly here.

The stoichiometric matrix defines the biochemical network, the library provides a suite

of functions to determine various subspaces of this matrix, these are implemented internally

by the libStruct library [66].

The dynamics of a biochemical network is described by the system equation

d

dt
s(t) = Nv(s(t),p, t), (2.14)

where s is the vector of species concentrations, p is a vector of time independent parameters,

and t is time. The steady state is the solution to the network equations when all the rates

43



of change are zero. That is the concentrations of the floating species, s that satisfy:

Nv(s(t),p, t) = 0 (2.15)

The library is designed to support multiple steady state solvers. Currently NLEQ steady

solver from [58] is used, however a number of additional solvers such as KINSOL from the

Sundials suite [42] is planned. The steady state of the system is calculated with a single

call to the steadyState() function.

Metabolic control analysis is the study of how sensitive the system is to perturbations

in parameters and how those perturbations propagate through the network. Two kinds

of sensitivity are defined, system and local. The local sensitivities are described by the

elasticities. These are defined as follows:

εvS =
∂v

∂S

S

v
=
∂ ln v

∂ lnS

Given a reaction rate vi, the elasticity describes how a given effector of the reaction step

affects the reaction rate. Because the definition is in terms of partial derivatives, any effector

that is perturbed assumes that all other potential effectors are unchanged.

The system sensitivities are described by the control and response coefficients. These

come in two forms, flux and concentration. The flux control coefficients measures how

sensitive a given flux is to a perturbation in the local rate of a reaction step. Often the

local rate is perturbed by changing the enzyme concentration at the step. In this situation

the flux control coefficient with respect to enzyme Ei,

CJEi
=

dJ

dEi

E1

J
=

d ln J

d lnEi
.

Likewise the concentration control coefficient is as

CSEi
=

dS

dEi

E1

S
=

d lnS

d lnEi
,

where S is a given species. The response coefficients measure the sensitivity of a flux or
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species concentration to a perturbation in some external effector. These are defined as,

RJX =
dJ

dX

X

J
=
d ln J

d lnX

RSX =
dJ

dX

X

S
=
d lnS

d lnX
.

where X is the external effector. All of the analysis features were originally written by

Herbert Sauro and are provided as a set of functions in the LibRoadRunner library and full

documentation is available on the library website at [28].

2.5.3 Conserved Quantities

Overview

The term moiety originated from medieval French moitié, meaning a parcel or portion of

a larger system that has been divided. Conserved moieties in chemistry are aggregate

groupings of chemical species that are conserved in a system, regardless of the individual

reaction rates. Consider the following system:

A → B

B → C

C → A

Regardless of the rates of reactions the quantity A + B + C = constant is conserved for

all time. Such conserved quantities are considered structural properties of the chemical

network as they are defined by the structure of the network, and not by the dynamics of

the rate equations. In systems biology, such a conserved quantity is typically referred to

as a ”conserved moiety.” A common example of a conserved moiety is the conservation

of the adenine nucleoside moiety, i.e., the total amount of adenine in its various forms,

AMP, ADP, ATP, is conserved throughout the time evolution of the system. Finding

and analyzing conserved moieties can yield insights into the structure and function of a

biological network. Conserved moieties represent dependencies that can be removed to

reduce a system’s dimensionality, or number of dynamic variables. In the previous simple
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network, it is only necessary to determine two out of three state variables, i.e., one only

need determine either A(t) and B(t), then C(t) is known from a linear combination of A

and B. Similarly, if B(t) and C(t) are known, then A(t) can be determined.

Moiety Conservation Analysis

A network of m chemical species and n reactions can be described by the m×n stoichiometry

matrix N, Ni,j is the net number of species i produced or consumed in the reaction

d

dt
S(t) = Nv(S(t),p, t), (2.16)

where S(t) = [S1(t), S2(t), · · · , Sn(t)]T is the time dependent vector of independent chemical

species concentrations, N is the time invariant stoichiometry matrix,

ν(t) = [ν1(t), ν2(t), · · · , νn(t)]T is the time dependent vector of reaction velocities, p is a

vector of time independent parameters, and t is time.

Each structural conservation, or interchangeably, conserved sum (e.g., conserved moiety)

in the network corresponds to a linearly dependent row in the stoichiometry matrix N. If

there are conserved sums, then the row rank, r of N is < m, and the stoichiometry matrix

N may first be re-ordered such that the first r are linearly independent, and the remaining

m− r rows are linear combinations of the first r rows,

N =

 Nr

N0

 . (2.17)

The reduced stoichiometry matrix, Nr consists of the first r (independent) rows of N, and

rows of the dependent stoichiometry matrix N0 are formed by linear combinations of the

independent rows of Nr. N may be expressed as a product of the m× r link matrix L and

the r × n Nr matrix:

N = LNr.
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The link matrix L has the form

L =

 Ir

L0

 ,
where Ir is the r×r identity matrix and L0 is a (m−r)×r matrix. Inserting the segregated

stoichiometry matrix 2.17 into the original dynamics eqn.2.16, we can now see how the set

of species S(t) can be separated into the set of independent species Si(t), and the set of

dependent species Sd(t).

d

dt
S(t) =

d

dt

 Si(t)

Sd(t)

 =

 Nr

N0

v(S(t),p, t),

=

 Ir

L0

Nrv(S(t),p, t)

= LNrv(S(t),p, t).

With the separation of the species and stoichiometries into independent and dependent

parts, the original dynamics equation can now be partitioned into a pair of equations,

describing the dynamics of the independent and dependent parts respectively,

d

dt
Si(t) = Nrv(S(t),p, t) ;

d

dt
Sd(t) = L0Nrv(S(t),p, t). (2.18)

The independent and dependent parts of eqn.2.18 can be re-combined and upon simplifica-

tion, we can relate the dynamics of the independent and dependent parts to each other as,

d

dt
Si(t)− L0

d

dt
Sd(t) = 0. (2.19)

Integrating eqn.2.19, and introducing the vector T as the constant of integration, we arrive

at

Sd(t)− L0Si(t) = T. (2.20)

The vector T is the vector of conserved moieties, and it is uniquely determined by the initial
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conditions of the chemical species:

T = Sd(0)− L0Si(0). (2.21)

The combination of eqn.2.20 and eqn.2.21 allow us to uniquely determine the complete set of

dependent species values, Sd(t) in terms of the current independent species values, Si(t) and

the initial conditions of both the independent and dependent species values, [Si(0),Sd(0)].

Therefore, we only need determine d
dtSi(t) to fully specify the dynamics of the complete

system.

The L0 matrix can be calculated through a number of standard techniques such as LU

factorization, Gaussian elimination or QR factorization. All of these methods are established

in [78] and implemented in the LibStruct library [78].

SBML to SBML conversion

The process of applying moiety conservation and model reduction to an existing SBML

document can be treated as a mapping of one SBML document to a new SBML document.

Syntactically the current SBML specification, [46] allows a conserved system to be fully

specified with zero changes required to the SBML syntax specification.

The mapping process is defined by the following procedures, starting with the original

document already loaded into the libSBML document object model (DOM):

1. Load the document into libstruct, this will be used to calculate the L0 matrix and the

lists of independent and dependent floating species.

2. Create a new SBML DOM, copy everything with the exception of the floating species

from the original into the new DOM.

3. Using the list of Si and Sd copy the floating species from the existing into the new

using the ordering specified by libstruct.

4. Create a new set of global parameters corresponding the set of conserved moieties,

assign each one of them an SBML id using a UUID, and add them to the new DOM.
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Figure 2.4:

4.7 Parameters1

A Parameter is used in SBML to define a symbol associated with a value; this symbol can then be used in2

mathematical formulas in a model. The definition of Parameter is shown in Figure 15.3

SBase

Parameter

id: SId
name: string { use=”optional” }
value: double { use=”optional” }
units: UnitSIdRef { use=”optional” }
constant: boolean

Figure 15: The definition of class Parameter. A sequence of one or more instances of Parameter objects can be located
in an instance of ListOfParameters in Model, as shown in Figure 10.

The use of the term parameter in SBML sometimes leads to confusion among readers who have a particular4

notion of what something called “parameter” should be. It has been the source of heated debate, but despite5

this, no one has yet found an adequate replacement term that does not have different connotations to different6

people and hence leads to confusion among some subset of users. Perhaps it would have been better to have7

two constructs, one called “constants” and the other called “variables”. The current approach in SBML is8

simply more parsimonious, using a single Parameter construct with the boolean flag constant to indicate9

which flavor the parameter is. In any case, readers are implored to look past their particular definition of10

a “parameter” and simply view SBML’s Parameter as a single mechanism for defining both constants and11

(additional) variables in a model. (We write additional because the species in a model are usually considered12

to be the central variables.) After all, software tools are not required to expose to users the actual names13

of particular SBML constructs, and thus tools can present to their users whatever terms their designers feel14

best matches their target audience.15

4.7.1 The id and name attributes16

Parameter has one required attribute, id, of type SId, to give the parameter a unique identifier by which other17

parts of an SBML model definition can refer to it. A parameter can also have an optional name attribute of18

type string. Identifiers and names must be used according to the guidelines described in Section 3.3.19

4.7.2 The value attribute20

The optional attribute value determines the value (of type double) assigned to the identifier. A missing21

value implies that the value either is unknown, or to be obtained from an external source, or determined22

by an initial assignment (Section 4.8) or other SBML construct elsewhere in the model.23

A parameter’s value is set by its value attribute exactly once. If the parameter’s constant attribute (Sec-24

tion 4.7.4) has the value “true”, then the value is fixed and cannot be changed except by an InitialAssignment.25

These two methods of setting the parameter’s value differ in that the value attribute can only be used to set26

it to a literal floating-point number, whereas InitialAssignment allows the value to be set using an arbitrary27

mathematical expression (which, thanks to MathML’s expressiveness, may evaluate to a rational number).28

If the parameter’s constant attribute has the value “false”, the parameter’s value may be overridden by29

an InitialAssignment or changed by AssignmentRule or AlgebraicRule, and in addition, for simulation time30

t > 0, it may also be changed by a RateRule or Events. (However, some of these constructs are mutually31

exclusive; see Sections 4.9 and 4.12.) It is not an error to define value on a parameter and also redefine32

the value using an InitialAssignment, but the value in that case is ignored. Section 3.4.8 provides additional33

information about the semantics of assignments, rules and values for simulation time t ≤ 0.34
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5. Using eqn.2.21, generate a set of assignment rules defining the new conserved moiety

variables, T.

6. Using eqn.2.20, generate a set of assignment rules defining the dependent species.

The mere presence of an assignment rule will cause the LLVM SBML compiler to

interpret a floating species as a dependent floating species which results in no ODE

being generated for that species.

The only requirement for specifying a conserved model in SBML is the relaxation of the

semantic restriction in section 4.9.3 stating that “there must not be both an AssignmentRule

variable attribute and a SpeciesReference species attribute having the same value, unless

that species has its boundaryCondition attribute set to “true””. Instead of being considered

an error condition, the new semantic interpretation of a species having both a species

reference and an assignment rule is to allow the rule to have higher precedence that the

reference, i.e. the species is interpreted as a dependent species if it has an assignment rule.

Currently in RoadRunner, when the stoichiometry matrix is generated and species is found

to have both an a species reference (participates in a reaction) and an assignment rule, an

error condition is raised. This can be easily changed so that when a species is found to

have both a reference and an assignment rule, no entry in the stoichiometric matrix would

be created for product species references if a assignment rule is found. This is a one line

change.

Though not absolutely required, we can introduce a new SBML element specialization of

the Parameter element called ConservedMoietyParameter. This new class would not add

any new fields to Parameter, it is merely there to to inform the SBML compiler not to list
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these global parameters list of identifiers. We would also add the semantic restriction that

ConservedMoietyParameter must be defined by an initial assignment rule. Updating the

SBML compiler to identify the ConservedMoietyParameter and generate the appropriate

identifier names for the global parameters and the new conserved moiety parameters, and

updating the SelectionRecord to identify these new symbols is perhaps a 20 lines of code

change.

Mutable Conserved Moieties

During the course of simulation and analysis, frequently, one might need to investigate

network properties in relation to the change of conserved moiety values. In general, one

might need to change the value of a dependent conserved species. Despite the fact that

internally, a subset of the floating species were re-classified as dependent species by the

conservation conversion algorithm, the user of the library should ideally not be conserved

with such internal details. A user should be allowed to change the value of a species

regardless of whether it an independent or dependent species. However, as the dependent

species are now no longer part of the state vector, rather they are now defined by rules, it

is not possible to change their value as it is possible to change the value of an independent

species by changing the value in the state vector. In fact, as mentioned in § 2.4.3, SBML

elements that are defined by rules are never allocated any memory storage space – whenever

their value is requested, either by an internal SBML dereferencing such as in a rate rule

or a function, or externally requested, the actual code that defines the rule is executed to

calculate the value. Therefore, in general, it is not possible to modify the value of an element

which is defined by a rule. However, in the special case of conserved floating species, we

may refer back the exact rule which defines them, eqn. 2.20. With eqn. 2.20, we know that

the dependent floating species is explicitly defined as

Sd(t) = L0Si(t) + T. (2.22)

It would be possible to change the value of a dependent species by altering the value of an

independent species as in general, the L0 matrix is not square, and hence not invertible.
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However, We may also notice that T is a column vector, and this has the exact same

ordering as the dependent species vector Sd. Therefore, if a new value is to be stored in

a dependent species, we may calculate the difference between the present value and the

new value, and add this difference to the appropriate entry in the T vector. This may be

explicitly stated if the value of x were to be stored in the ith conserved species, Sd,i → x as

d = x− Sd,i

Ti → Ti + d. (2.23)

The operation specified in 2.23 is currently implemented in the C++ species accessor func-

tions. A limitation of the approach is that currently, SBML events may not alter the value

of a conserved species. This limitation will be adressed in a future version as the mutable

conserved moiety operation, 2.23 will be moved into the JIT compiled code where SBML

event assignments may change these conserved species values.

SBML Extension

libSBML has intrinsic support for extensions, [11, 12]. The majority of new SBML fea-

tures are first implemented as a plugin to libSBML. The extension system allows one to

develop entirely new SBML elements, and using the plugin system of libSBML, documents

containing extensions can be read and written directly and transparently.

The moiety conversion algorithm specified here is implemented as an libSBML extension.

This means that it may be used independently of the LibRoadRunner library and it can

apply the transformation to a document to generate a new moiety conserved document

which may be saved to disk or shared between applications.

2.5.4 Spatial Systems using RoadRunner

In this section, I will demonstrate the use of roadrunner used in a spatial environment with

simple example of LibRoadRunner used simulate reaction-diffusion models. One of the

primary design goals of this library was interoperability with existing simulation libraries,

specifically spatial simulators. In order to maximize efficiency, spatial solvers require access
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to the entire rate of change of the state vector as one single contiguous memory block.

Models described using SBML assume that compartments are well-stirred (CWSC).

Chemical species are assumed to distributed instantly and uniformly throughout a finite

volume, i.e. the diffusion constant is infinite, or at least significantly larger than the con-

centration rate of change due to chemical reactions. Though this assumption may hold

in certain circumstances, in general, it is relatively rare to find continuous well stirred

compartments in nature. Biology is incredibly spatially inhomogeneous [55].

Whilst it is relatively simple to abstract the concept of an ordinary differential equation

(ODE) integrator, it is much more difficult to generalize to concept of a partial differential

equation (PDE) integrator. Essentially, all one needs to numerically integrate an ODE

is a call-back function which returns the rate of change of the state vector. Obviously

higher order schemes do use information such as the Jacobian or Hessian, but most numeric

integrators only need the rate of change of the state vector. Spatial systems are however

defined in terms of PDEs and PDE integrators always require the spatial extents of the

system to be described using a mesh or lattice data structure. These data structures vary

wildly between different PDE libraries.

Many cellular and tissue simulators such as CompuCell3D [75] or V-Cell [70] incorporate

their own PDE integrators. One of the key design goals of LibRoadRunner is interoper-

ability with existing libraries and applications. Therefore, here we will give an example of

integrating libRoadRunner into a spatial system, with libRoadRunner providing the rate of

change term in a reaction-diffusion system.

Reaction-Diffusion

Most examples in cellular and tissue biology can be described by a reaction-diffusion (RD)

equation. Such a system is composed of spatial diffusion term and temporal reaction term,

∂U

∂t
= D∆U +R(U), (2.24)

where U is a vector of chemical concentrations, D is the (diagonal) diffusion matrix, and

R(U) is the rate of change of the chemical concentrations due to local reactions. The
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Laplacian operator acting on the chemical field determines the spatial diffusion. RD is

simply the Poisson equation with the addition of a reaction term.

Brusselator

The Brusselator (Brussels - Oscillator) is a theoretical model of an auto-catalytic reaction

conceived by Prigogine, et al. [57]. Although the Brusselator is a purely theoretical sys-

tem, it is one of the simplest examples of a cross activator-inhibitor reaction which also

includes chlorite-iodide-melonic acid (CIMA), ferrocyanide-iodate-sulphite, and numerous

other enzyme catalytic reactions. This well known system is comprised of the following

reactions:

A→ X, k1A

2X + Y → 3X, k2X
2Y

X +B → Y +D k3XB

X → E k4X, (2.25)

where the reaction rates are given by the usual mass-action kinetics. For our purposes, all

constants are set to unity. There are two floating species, X,Y , and four fixed boundary

species, A,B,D, and E.

In this system, only the two floating species, X,Y have dynamics governed or rate rules,

thus these two species comprise the state vector of the system. All other elements of the

SBML model are fixed boundary species, parameters or volumes whose values do not change

in time.

Discretization

Numerous discretization of the reaction diffusion are possible, however here we will focus

on the simplest possible case, the finite forward difference scheme. The forward difference

scheme tends to be numerically unstable and is not particularly efficient, however it is ex-

tremely simple and thus serves as simple example for numerically solving the RD equations.

The forward difference discretization will vary based on what assumptions are made of the
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RD system. One might assume that the magnitude of the spatial diffusion term is similar

to the reaction rate dynamics, |D∆U | ≈ |R(U)|. Under such assumptions, one might re-

place the time differential and Laplacian with forward and central difference approximations

respectively, and solve the next time step as

Ux,t+δt + Ux,t
δt

= D
Ux−δx,t − 2Ux,t + Ux+δx,t

δx
+R(Ux,t)

Ux,t+δt = Ux,t +D
δt

δx
(Ux−δx,t − 2Ux,t + Ux+δx,t) + δtR(Ux,t). (2.26)

One might also assume that the spatial diffusion term is much slower than the reac-

tion term, |D∆U | � |R(U)|. In such cases, the local reaction term can be considered to

equilibrate with surroundings faster that the surroundings can change. In such cases, if

one used the previous discretization, considerable time can be spent needlessly calculating

the Laplacian while using a time step small enough to ensure stability while integrating

the reaction term. Therefore, in order to use a suitably large time step to calculate the

Laplacian at an appropriate rate, we may choose to integrate the reaction term as an ODE

over this time interval as

Ux,t+δt = Ux,t +D
δt

δx
(Ux−δx,t − 2Ux,t + Ux+δx,t) +

∫ t+δt

t
R(Ux,t)dt. (2.27)

The slow way

perform a reaction-diffusion step

takes the input lattice, ui, performs the reaction - diffusion step, and writes the output

to uo.

ui and uo are (nx,ny,2) 3 dimensional arrays, the last index are the 2 elements of the

Brusselator state vector.

This is an example of how to write extremely inefficient Python code. The general rule

of writing fast code in Python is to write as little Python as possible.

def rd_step(ui , uo):

global time , nx , ny , r, time series , time step

for i in range(0,nx):

for j in range(0,ny):
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# Laplacian in x direction

uxx = ( ui[i+1 if i < nx -1 else 0, j] - \

2*ui[i,j] + ui[i-1, j] )/dx2

# Laplacian in y direction

uyy = ( ui[i,j+1 if j < ny -1 else 0] - \

2*ui[i,j] + ui[i, j-1] )/dy2

# add rate of change due to reaction part

uo[i,j] = ui[i,j] + dt*D*(uxx+uyy) + \

dt * r.model.getStateVectorRate(time , ui[i,j])

The faster way

A vectorized version of the reaction diffusion step, code is much smaller and runs about 200

times faster than the non-vectorized version above.

This function uses a numpy expression to evaluate the derivatives in the Laplacian, and

calculates u[i,j] based on ui[i,j].

• RR getStateVector accepts an N dimensional array, provided the trailing index is the

same size as the state vector.

• automatically iterates over leading dimensions.

• best way to write fast code in python is to write as little as possible.

• The rate of change of the state vector is a function of the state vector, hence getStat-

eVectorRate is a const function - does not alter the state of the loaded model.

• Periodic boundary conditions - just a shift of the matrix indices - accomplished with

numpy roll.

• ideal way for prototyping new integrators.

def rd_step_vec(ui , uo):

global time , time series , time step , dt , dx2 , dy2 , dudt

two_ui = 2.0 * ui

uxx = (n.roll(ui ,1,0) + n.roll(ui ,-1,0) - two_ui) / dx2

uyy = (n.roll(ui ,1,1) + n.roll(ui ,-1,1) - two_ui) / dy2

uo[:,:,:] = ui + dt * (D * (uxx+uyy) + \

r.model.getStateVectorRate(time , ui, dudt))
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2.6 Community Integration

LibRoadRunner uses libSBML (version 5.9 as of this writing) to read / write SBML docu-

ments. This library is also used by the majority of SBML capable applications. Therefore,

we can read any document that libSBML is capable of reading. Two features of the SBML

L3V1 specification are not currently supported: delay equations and algebraic rules. If

either of these features are encountered, they are ignored and warning message is logged

and presented.

All our source code is liberally licensed under the un-encumbered Apache Version 2.0

license, so our library may be freely used in the widest range of open source and commercial

applications. Our entire development process is transparent, all source code and history is

available on the Git Hub source repository at https://github.com/AndySomogyi/roadrunner.

We welcome and encourage user contributions. We have created and maintain a LibRoad-

Runner community web site at http://libroadrunner.org/ where users can participate in the

community mailing list to receive help and suggest enhancements. The latest versions of

the library and documentation may be downloaded.

As LibRoadRunner is written specifically as a library designed to be used in existing

application, we believe this encourages collaboration and involvement with users developing

their own uses and applications of our library.

In the relatively short short time since its inception, LLVM has spawned hundreds if not

thousands of individual projects. These range from a variety of new languages such as Julia,

to new development tools to new applications such as WebC, NaCL. This is in contrast to

GCC, which is without doubt an extremely capable compiler, but has not anywhere near

number or level of community initiated projects like LLVM.

The reasons for this fact may be in dispute, but likely it is a combination of the fact

that LLVM is written in modern C++ rather than C thus making it more accessible; LLVM

was whiten from the onset and a modular library rather than an application, or possibly it

is the more liberal license, BSD vs. GPL. In any case, we believe that LibRoadRunner has

the key attributes which we believe LLVM attractive for community involvement.
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Chapter 3

Electrochemical Mitochondrial Modeling

3.1 Introduction

The electrophysiological and metabolic state of heart muscle mitochondria is modeled via a

coupled electrometabolomic model. Kinetic metabolic and membrane transport rate equa-

tions are coupled via a reaction-electrophysiological model that also accounts for the Debye

layer surrounding all membranes via a capacitive equation. The membrane flux potential

contributions that affect the membrane potential and another that accounts for the mainte-

nance of charge neutrality far from the membrane are the charge layer that lies within the

Debye layer. The model is used to gain insights into the states of heart muscle in healthy

and diabetic states.

In a system like a mitochondrion, and in fact most cells, electrophysiology and the

metabolomics are strongly coupled that modeling them requires a mathematical framework

that accounts for a broad spectrum of processes. For example, most biochemical species

are charged and therefore their exchange with the surroundings is strongly affected by

membrane potentials. In turn, these biochemical species often mediate activity of the

ion pumps that lead to the membrane potentials. Clearly to understand these systems,

it is necessary to develop a model that accounts for the charges of biochemical species

and its effect on the membrane potential. The objective of the study is to use such a

comprehensive electrometabolomic approach to understand the electrometabolomic states

of the mitochondrion in normal and diseased systems with the ultimate objective to derive

implications for function as it is affected by diabetics.

This chapter will first begin with an overview of the mitochondrial biochemistry, then
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will proceed to develop a theory to model the chemistry of these electro-chemical kinetics.

Once the electro-chemical model has been developed, it will be embedded in a quasi-spatial

environment.

The modeling approach taken here will be a Reaction Kinetics (RK) approach. This is

the study how the rate of change of a phisical process is relates to other rates of change

and the state of the system. This approach differs from the Flux Balance Analysis (FBA)

approach which is simpler but less informative. FBA models are significantly simpler that

dynamic models develped in RK and require fewer parameters such as free energies, reaction

rates or concentrations. However, FBA models provide much less information about the

model. FBA assumes the system is operating at a steady state, and is unable to to model

any dynamic processes such as oscillations. FBA does not consider the concentrations of

species, and an FBA model may contain unrealistic concentrations. FBA may however be

usefull in when this model is embedded in a larger spatial system if the characteristic time

scale of the subcellular network is much faster than the characteristic time scale of the

spatial process.

Chemical and biochemical redox reactions can all, in principle, be carried out by trans-

ferring the electrons from the molecule being oxidized to an electrode located in one solution,

and then delivering electrons to the molecule being reduced via another electrode located

in a separate solution. I

Oxidation reduction reactions transfer electron (or other charged group, i.e. hydride

H−, Hydroxide, OH−1, etc) from electron donor (reducing agent) to a electron acceptor

(oxidizing agent). The reducing agent loses an electron(s) and changed from a reduced to

an oxidized form. The oxidizing agent accepts an electron and changes from the oxidized

to the reduced form. The reducer and oxidizer pair form a redox couple.

The standard reduction potential, E0 is also referred to as the midpoint potential of

a redox couple. E0 is defined as the voltage at which the concentrations of oxidized and

reduced products are at equilibrium. E0 is a measure of the strength of an electron donor, i.e.

a component with a more negative E0 is a stronger electron donor or equivalently, a weaker

electron acceptor. When two half equations are combined, the E0 potential determines the

direction the electrons will flow, in the absence of any external potentials or concentration
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gradients.

3.2 Mitochondrion Structure and Function

Mitochondria, found in most eukaryotic cells, are organelles that produce most of the energy

supply for the cell in the form of ATP. The mitochondrion’s double-membrane organization

allows for five separate compartments within the organelle including the outer and inner

mitochondrial membranes, the inter-membrane space (the space between the inner and outer

membranes), the cristae (formed by the inner membrane foldings), and the matrix (the space

within the inner membrane). The mitochondrion serves several functions, such as fatty

acid and glycogen metabolism. Most importantly, mitochondria provide cellular respiration

for cells by coupling oxidative phosphorylation and membrane potential. Glycolysis, which

occurs in the cytosol, produces pyruvate that is converted into carbon dioxide and water via

the citric acid cycle in the matrix. NADH produced from the citric acid cycle is oxidized in

the electron transport chain (ETC), located in the cristae, to establish a proton gradient, or

membrane potential, across the inner membrane. The proton gradient drives protons to go

through the ATP synthase of the inner membrane, powering the synthase to phosphorylate

ADP to ATP.

Mitochondria perform the final stages of the cellular respiration process. Cellular res-

piration at a very high level is the transduction of energy stored in the chemical bonds of

glucose C6H12O6 to phosphorylate ADP into ATP. ATP is the principal source of energy

for all cellular processes. In respiration, glucose is oxidized and oxygen is reduced to form

water. The carbon atoms of the sugar molecule are released as carbon dioxide CO2. Cellular

respiration proceeds in two major steps: 1) glycolysis and 2) aerobic respiration. Anaerobic

respiration also occurs, but will not be discussed here. The glycolysis pathway produces

two ATP, and if O2 is available, thirty-four more ATP are produced in the aerobic pathway.

Oxidative phosphorylation is the final stage of aerobic oxidation in eukaryotes and oc-

curs in the mitochondrion. Here, the reduced coenzymes NADH and FADH2 which were

produced by 1) aerobic oxidation of pyruvate by the citric acid cycle, and 2) oxidation of

fatty acids and amino acids, are oxidized in the ETC in order to establish a proton gradient
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across the mitochondrial matrix-intermembrane space. The potential energy in the pro-

ton gradient is then used by ATP synthase to produce ATP. Here, protons fall back down

the proton gradient through the ATP synthase ion channel. The energy from the proton

exchange is used to phosphorylate an ADP back into an ATP.

3.2.1 Electron Transport Chain

The ETC is a series of sequential oxidation-reduction reactions which pass electrons from

NADH or FADH2 through a sequence of protein complexes and charge carriers, finally

O2, producing H2O. The ETC is composed of four protein complexes, I, II, III, IV, in

the matrix-intermembrane space membrane. These complexes sequentially catalyze redox

reactions. Electrons are transferred to O2 which is finally reduced to H2O. The flow

of electrons through the chain is thermodynamically favorable because each subsequent

carrier has a higher electron affinity than the previous one. Hence, the electron flow is

spontaneous. The energy obtained from each redox reaction is used to pump protons from

the mitochondrial matrix into the inner membrane space. Complex I, Complex III and

Complex IV pump protons across the inner mitochondrial membrane.

Electrons first enter the ETC from NADH at Complex I. FAD2 electrons enter at com-

plex II. These electrons are then passed from Complex I or II to charge carrier Coenzyme

Q10 , commonly referred to as CoQ10 (Co indicates it is a coenzyme, Q indicates quinone

chemical group, and 10 is the number of isoprenyl subunits in its tail), here we will sim-

ply use Q as this is the only quinone we will refer to. Q is a hydrophobic (fat-soluble)

molecule, and is therefore mobile in lipid plasma membranes. Q freely diffuses inside the

membranes, but is typically not found in any significant quantities in any compartment. Q

ferries electrons from complex II to complex III. Electrons at complex III are transferred to

cytochrome C. Cytochrome C is a highly hydrophilic (water soluble) protein, unlike other

cytochrome, hence it is found freely diffusing in the compartments rather than the lipid

membranes. Electrons are then ferried by cytochrome to complex IV. Finally, electrons are

transferred by complex IV to O2 is then reduced to water.

Each protein complex uses metal containing prosthetic groups such as iron-sulfur clus-

ters, copper ions, hemes or flavins as electron carriers. The flavins are FMN - FMNH2 in
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complex I or FAD - FADH2 in complex II.

Complex I, also called NADH-ubiquinone oxidoreductase is a large L-shaped protein. It

is the largest of the ETC complexes, with a mass of ≈ 850 kDa [53]. Complex I contains

flavin mononucleotide (FMN) as the NADH oxidation active site, at least one Q binding

site, and possibly eight iron-sulfur (FeS) clusters. The primary role for complex I is to

catalyze a pair of coupled processes. The first is the exergonic transfer of hydride ion from

NADH and a proton from the matrix to FMN, expressed as

NADH + H+ + Q −−→ NAD+ + QH2. (3.1)

The free energy obtained from this reaction is used by the second process which is the

endergonic transfer of four matrix protons to the the inner membrane space. The overall

reaction here is

NADH + 5 H+
m + Q −−→ NAD+ + QH2 + 4 H+

i , (3.2)

where the m subscript is used to indicate matrix molecules and the i subscript indicates

inner membrane molecules.

The FMN site and the FeS clusters exist in the Iλ subunit of Complex I. NADH can

bind to the FMN site on the Iλ subunit and transfer a hydride (2 electrons) to the FMN.

The electrons travel through to the FeS clusters and the H+ is separated and falls off into

the matrix along with the NAD+. When looking as the whole Complex I, this H would be

re-absorbed along a site on the membrane arm of Complex I along with another H+ and

would join with the pair of electrons to be combined with a Q to form QH2. Therefore, if

we look at just the net reaction occurring in the Iλ subunit, we see that it can be expressed

as

NADHm −−→ NAD+
m + H+

m + 2 e−λ , (3.3)

where the λ subscript is used to indicate the that the electrons are deposited at the mem-

brane facing side of the Iλ subunit. The correct simulation of this reaction will be the key

purpose of this chapter.

It has been show that in general, the complex I mediated interconversion of NADH and

61



NAD+ 3.3 is in general a reversible reaction [7,16,17,82]. The free energy of reaction ∆G of

each component of reaction 3.3 is known, there is a level of uncertainty of the exact values

of the forward and reverse rate constants and the exact form of the reaction rate rule itself.

This chapter will focus on using the tools developed in chapter 2 to develop a physically

based simulation of Iλ subunit of mitochondrial ETC complex I in order to develop estimates

of the forward and reverse rates of reaction 3.3.

3.3 Quantitative Model Formalism

The development of mitochondrial ETC model begins with a physical description of the

system. A schematic of the system described here is depicted in 3.1. Although this section

will focus on the NAD Oxidoreductase protein, the following discussion is completely general

and is valid for any trans-membrane protein complex. This section will first develop the

formalism to describe a general electrochemical system in the absence of of any mobile

electrolytes, then will add the physical realism of accounting for mobile electrolytes which

are present in any biologically relevant regime.

18 nm

12 nm

NADH NAD+ + H+

Q QH2

2 e−H+

H+

Iλ subunit

matrix

inner membrane space

Figure 3.1: Mitochondrial Complex I, NAD Oxidoreductase. This large “L” shaped membrane
protein exists in the mitochondrial matrix - inner membrane space plasma membrane. The
upper arm extends ≈ 12 nm into the matrix. Adapted from [26].
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3.3.1 Reaction Rate Kinetics

Reaction rate kinetics describe the concentration of reacting entities over time. They are

most commonly used to describe the rate of change of chemical compounds in solution, how-

ever this approach can be used to describe almost any system with interacting time varying

concentrations of some quantity: numbers of bacteria, numbers of active and quiescent

neurons in a cluster, number of trees and parasitic insects in a forest, and so forth.

Biological processes nearly always occur at constant temperature and pressure. Thus

they can be characterized by the change in Gibbs free energy of reaction, ∆G per process.

−∆G may also be known as the chemical affinity [49,54] in certain contexts, however most

modern texts generally use the term free energy of reaction. This function indicates the

maximum amount of useful work which may be extracted from a system held at constant

temperature and pressure. The sign and magnitude of the change in Gibbs Free Energy

determines whether a process will occur spontaneously if at all.

∆G is a measure of how far the system is from equilibrium. At equilibrium, ∆G is zero,

and the farther a system is from equilibrium, the larger the magnitude of ∆G is, and thus,

the greater is the amount of work that the process can perform, or the amount of works

performed on the process. If ∆G < 0, the reaction proceeds spontaneously. If ∆G = 0,

the reaction is at equilibrium, and if ∆G < 0, the reaction proceeds spontaneously in the

reverse direction. Formally, ∆G is written as a stoichiometric weighted sum of the chemical

potentials of the reaction reactants. All reactions are in principle reversible, so accounting

for the products and reactants on both sides, ∆G is written as a stoichiometric weighted

sum of the individual chemical potentials,

∆G =

p∑
νpµp(T )−

r∑
νrµr(T )− (3.4)

where the sums, r, p are over the reactants and products respectively, and ν are the stoi-
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chiometric coefficients. Here, the chemical potential, µ is written as

µi(T ) = µ∗i +RT ln(ai)

≈ µ∗i +RT ln(ci), (3.5)

where µ∗i is the reference chemical potential, and the activity a has been approximated with

the chemical concentration c.

For a reaction to be completely irreversible, the free energies of formation of the products

would have to be negative infinity. This may occur when either the enthalpy of formation

tends to negative infinity or the entropy of formation tends to infinity. The former is perhaps

unlikely in nature, however entropy tending to infinity may occur in situations where the

resulting products become separated by distance or barrier such as say a trans-membrane

ion pump.

When the number of interacting particles is sufficiently large and the reaction rate con-

stants is sufficiently low, reaction rate systems may be solved approximately using the law

of mass action, which states that the rate of any given chemical reaction is proportional to

the product of the activities of the reactants. Activities however are not usually known for

most biological conditions, so they are typically approximated with the chemical concen-

trations. The law of mass action states that if a item A reacts with item B to produce item

C with the reaction

A+B
k→C, (3.6)

then the reaction rate is kAB, with k as the forward rate constant, and item concentrations

denoted by A and B. The rate of production or consumption of any item must equal the

reaction rate:

dC

dτ
= −dA

dτ
= −dB

dτ
= kAB. (3.7)

The reaction rates are a measure of how fast a reaction can occur, it is the product of the

reaction rate constant, k in this case, and an expression which approximates the availability

of the reactants, AB in this case. The reaction rates as determined by the law of mass

action are approximations, and valid only near equilibrium conditions. In general, with a
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system of multiple reactants, and both a forward and backward reaction rate:

αA+ βB + · · ·
k+�
k−
σS + τT + · · · , (3.8)

the forward and backward reaction rates νf , νb are approximated as

νf = k+A
αBβCγ · · ·

νb = k−S
σT τUυ · · · . (3.9)

The law of mass balance states that the rate of change of a substance must be equal to rate

of production minus the rate of consumption of the substance, or more formally:

dS

dt
=
∑

production−
∑

consumption. (3.10)

Thus from (3.6), we can see that both A and B are being consumed at the rate kAB, and

C is being produced at that rate.

The forward and reverse reaction rates, according to the law of mass action are given

as

R+ = k+
∏
r

aνrr , R− = k−
∏
p

a
νp
p , (3.11)

where a is the molar activity, and p and r are the products and reactants respectively of a

given reversible reaction. The free energy of reaction, ∆G◦ is the stoichiometric weighted

sum of the free energies of formation,

∆G◦ =
∑
p

νp∆G
◦
f [p]−

∑
r

νr∆G
◦
f [r]. (3.12)

The law of mass action can be made formal by looking at the definition of the free

energy of reaction, 3.4. At equilibrium, ∆G = 0, inserting 3.5 into 3.4, expanding the sums
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and grouping the reference chemical potentials, we have

∆G|eq =

p∑
νpµp(T )−

r∑
νrµr(T ) = 0

=

p∑
νpµ
∗
p(T ) +RT

p∑
νp ln(cp,eq)−

r∑
νrµ
∗
r(T )−RT

r∑
νr ln(cr,eq) = 0

RT

p∑
νp ln(cp,eq)−RT

r∑
νr ln(cr,eq) =

r∑
νrµ
∗
r(T )−

p∑
νpµ
∗
p(T ). (3.13)

Dividing both sides by RT and exponentiating, one arrives at the definition for the equilib-

rium constant,

K =
k+

k−
=

∏p c
νp
p,eq∏r cνrr,eq

= exp

(∑r νrµ
∗
r(T )−∑p νpµ

∗
p(T )

RT

)
= exp

(−∆G◦

RT

)
. (3.14)

The equilibrium constant K also gives the ratio of the forward and reverse rate constants.

Here, we may define the stoichiometric weighted sum of the standard chemical potentials

as the standard change of reaction in Gibbs free energy as ∆G◦.

Away from equilibrium, ∆G is not zero, it my be written as 3.13 with the equilibrium

concentrations replaced with the current concentrations. The sum of the standard chemical

potentials is the same as in 3.13 and may be replaced with −∆G◦ as

∆G =

p∑
νpµ
∗
p(T ) +RT

p∑
νp ln(cp,eq)−

r∑
νrµ
∗
r(T )−RT

r∑
νr ln(cr,eq)

= ∆G◦ +RT

(
p∑
νp ln(cp)−

r∑
νr ln(cr)

)

= ∆G◦ +RT ln

(∏p c
νp
p∏r cνrr

)
= −

(
RT ln(K) +RT ln

(∏r cνrr∏p c
νp
p

))
= −RT

(
ln

(
k+

k−

)
+ ln

(∏r cνrr∏p c
νp
p

))
= −RT ln

(
k+
∏r cνrr

k−
∏p c

νp
p

)
. (3.15)

Finally, using the definition of the forward and reverse reaction rates 3.11, we may relate
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these rates to the Gibbs free energy change of reaction as

∆G = −RT ln

(
R+

R−

)
. (3.16)

The previously developed formalism can describe a very wide range of reactions, however

it does not account for reactions involving charge transfer (electron transfer). A significant

portion of biological reactions are oxidation or reduction reactions and do involve the trans-

fer of electrons. Any redox reaction can in principle be carried out by transferring electrons

from a molecule being oxidized in one solution to molecule being reduced in a separate

solution through an electrode. Frequently in nature, when when the electrode takes the

form of a trans-membrane protein and the oxidized and reduced molecules are in solutions

separated by a membrane, this is exactly what occurs. In redox reactions, the potential

difference strongly influences the rate of reaction. This influence is described with the ad-

dition of an electrical term to the chemical potential, creating the electrochemical potential,

µ̃i = µi + ziFφ, (3.17)

where zi is the electron valence, F is Faraday’s constant, and φ is the potential difference.

In order to determine how the electrical potential difference influences the reaction rates, we

will begin with the introduction of an augmented Gibbs free energy of reaction term, ∆G̃,

which is defined as a stoichiometric weighted sum of electro-chemical potentials instead of

chemical potentials. They carrying out the procedure outlined above, we will derive a set

of augmented reaction rates.

The augmented Gibbs free energy is defined similar to the Gibbs free energy of reac-

tion 3.4 as

∆G̃ =

p∑
νpµ̃p(T )−

r∑
νrµ̃r(T ) (3.18)

= ∆G+

p∑
νpzpFφ−

r∑
νrzrFφ. (3.19)

The summation over the first part of the chemical potential, and the stoichiometric sum

was carried out on the electrical part. A pair of augmented reaction rates may be defined
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similarly to 3.4 as

∆G̃ = −RT ln

(
R̃+

R̃−

)
. (3.20)

Combining 3.19 and 3.20, we may solve for the augmented reaction rates as

−RT ln

(
R̃+

R̃−

)
= ∆G̃

= ∆G+

p∑
νpzpFφ−

r∑
νrzrFφ

= −RT ln

(
R+

R−

)
+

p∑
νpzpFφ−

r∑
νrzrFφ

R̃+

R̃−
=
R+

R−
exp

φF

RT

(
r∑
νrzr −

p∑
νpzp

)
︸ ︷︷ ︸

n


=
R+

R−
exp

(
φF

RT
n

)
. (3.21)

It may be observed that the sum over the reactant and product stoichiometric coefficient

in 3.21 is the total number of electrons transferred in the reaction. This value depends only

on the constant electronic valences and stoichiometric coefficient, and may be replaced with

n.

At this point, we may notice that there is no unique way to determine what fraction

of the exponential correction factor should belong to the forward or reverse reaction rates.

Therefore, we introduce a transfer coefficient α, such that for any number x, x = (1+α−α)x,

hence, x = αx+ (1− α)x. Re-writing the exponential term with α,

R̃+

R̃−
=
R+

R−
exp

(
α
φF

RT
n+ (1− α)

φF

RT
n

)

=
R+

R−

exp
(
α φF
RT n

)
exp

(
−(1− α) φFRT n

) . (3.22)

Therefore,

R̃+ = R+ exp

(
α
φF

RT
n

)
; R̃− = R− exp

(
−(1− α)

φF

RT
n

)
. (3.23)

For an electrochemical reaction to be in equilibrium, the net reaction rates, R̃+ and R̃−
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much be equal. In a redox reaction which involves the transfer of electrons, may in general

proceed spontaneously without external potential, φ. This external potential, frequently

referred to as the stopping potential is written as E0. Regardless of whether the system is

at equilibrium or not, the relationship of the change in free energy, ∆G to the forward and

reverse reaction rates specified by 3.16 always holds. In order to determine the relationship

between E0 and ∆G◦, we may set 3.21 equal to 1, and using 3.16, we arrive at

∆G = nFφ , or ∆G◦ = −nFE0 (3.24)

at equilibrium. Here, n is the number of electrons transferred per reaction, and F is

Faraday’s constant.

E0 is readily accessibly from experimental data, however at this point, there is still

some ambiguity as to how exactly to specify the forward and reverse rates, k+ and k−

respectively. ∆G◦ only specifies the ratio of k+ to k−, not their individual values. Thus, we

may introduce an additional parameter, called the standard rate constant, which specifies

the magnitude of each rate constant and removes this ambiguity. Starting with 3.14, we

may define k◦ such that,

K =
k+

k−
=
k◦

k◦
k+

k−
. (3.25)

k◦ is a parameter which typically has units of cm/seconds, and does not affect the equilibrium

value of the reaction (which is uniquely specified by ∆G◦ from equilibrium thermodynam-

ics), but rather specifies how fast the reaction will approach equilibrium. k◦ may also be

referred to as the “kinetic facility” of a redox couple. A reaction with a large k◦ (0.1 to

10 cm/s) will tend to equilibrium faster than reactions with a small k◦.

Using the previously developed relations of K and ∆G◦, we may fold these two values

into 3.23, and use the single previously developed parameter α to uniquely determine these

values. Starting with 3.21, we expand the standard reaction rates into their mass action
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products and rate constants, then using 3.14 and 3.24, we have

R̃+

R̃−
=
R+

R−
exp

(
φF

RT
n

)
.

=
k◦k+

∏
r c

νr
r

k◦k−
∏
p a

νp
p

exp

(
φF

RT
n

)
=
k◦
∏
r c

νr
r

k◦
∏
p a

νp
p

exp

(−∆G◦

RT

)
exp

(
φF

RT
n

)
=
k◦
∏
r c

νr
r

k◦
∏
p c

νp
p

exp

(
nF

RT

(
φ+ E0

))
. (3.26)

Finally, re-applying the process of introducing the α parameter in 3.31, we arrive at

R̃+ = k◦
∏
r

cνrr exp

(
α
nF

RT

(
φ+ E0

))
; R̃− = k◦

∏
p

c
νp
p exp

(
−(1− α)

nF

RT

(
φ+ E0

))
.

(3.27)

This rate equation is effectively identical to the well accepted Butler-Volmer equa-

tions [18,29]. This formalism completely eliminates the forward and reverse rate constants,

k+ and k− which can be an very large source of uncertainty, and may be very difficult to

estimate from experimental data as they effect the reaction is non-trivial ways. These pair

of parameters are replaced them with known physical constants and a pair of parameters

which may be easily fit from experimental data [80].

The difference between the forward and reverse rates from 3.27 specifies the net rate of

reaction, or flux of a chemical reaction in units mol/literseconds. In other words, it specifies

how fast the concentration of a given set of substances (reactants) is being converted into

a set of different substances (products). If this reaction is is a redox reaction occurring at

the face of an electrode, membrane, or some other surface, then it also specifies the amount

of electrical current flowing through that surface. This electrical current is given by

J = nFAk◦
(
R̃+ − R̃−

)
= nFAk◦

(∏
r

cνrr exp

(
α
nF

RT

(
φ+ E0

))
−
∏
p

c
νp
p exp

(
−(1− α)

nF

RT

(
φ+ E0

)))
,

(3.28)

where n is the number of electrons transferred per reaction, and A is the area of the surface.
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Physical Interpretation of Kinetic Law Parameters

The electric flux with varying α parameters is plotted in 3.2. This section will summa-

rize this subsection with discussion of the physical meaning of the parameters that were

introduced.
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Figure 3.2: The effect of varying the transfer coefficient, α on the electric flux 3.56 as a
function of potential, 3.56. Here, n = 2, A = 1 cm, k◦ = 10−7 cm/s, and the oxidation and
reduction concentrations were held constant at 1 mM/liter, and E◦ = −3.2

In the electric flux kinetic law, 3.56, the simplest parameter is the standard, or midpoint

potential, E◦. This is the potential where half of the molecules are in the oxidized state,

and the other half are in the reduced state, it is the midpoint of a redox titration. This is

the Nernst potential which is required to hold the reaction at equilibrium, and this is the

only parameter which is may be calculated through equilibrium thermodynamics. In this

case, it also represents the potential zero crossing of the current flow.

The standard rate constant, k◦ is a measure of how fast reaction will take place, it

is a measure of the kinetic facility of the redox couple. Simple redox couples (such as

those involving a single electron transfer) will tend to have large k◦ values, on the order

of 0.01 − 10 cm/s. More complex reactions (multiple electron transfers) will tend to have

smaller k◦ values, the slowest k◦ values are on the order of 10−10 − 10−9 cm/s.

The transfer coefficient α, also called symmetry coefficient is a is a measure of the the

symmetry between the forward and reverse electron transfer reactions – it is a measure of the
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symmetry of the energy barrier. The variation of α with all other parameters held constant

is depicted in fig. 3.2. An α value of 0.5 means that the reaction is perfect symmetric about

the midpoint potential. Effectively, α is a measure of how steep the forward or reverse

energy barriers are. The closer α is to one, the more irreversible the reaction becomes.

On examination of fig. 3.2, we may see that as α → 1, a very small potential may drive

a comparatively large forward current, but increasing amounts of potential are required to

drive a reverse current. Similarly, as α→ 0, small negative potentials result in large reverse

current flow, very large forward potential is required to drive a forward current.

Fig.3.2 is an example of a voltammogram. This type of plot is readily produced in a

cyclic voltammetry experiment.

In the following section, we will introduce the cyclic voltammetry experiment and show

how the results of these experiments can be used to fit the α parameter and verify the E0

constant.

3.3.2 Interpretation of Experimental Data

Cyclic Voltammetry

Cyclic voltammetry (CV) is a commonly used experimental technique that can provide sig-

nificant insight in the understanding of electro-chemical redox reactions. A CV experiment

is a conceptually very simple experiment which readily be performed on any laboratory

bench top with minimal set of laboratory equipment. This, combined with the utility has

led to a widespread use of CV for investigation of a wide variety of redox systems [6,20,34].

A typical CV experiment, a potentiostat sweeps the potential of a working electrode

(WE) and measures the resulting current between the WE and the reference electrode

(RE). The potential / current relationships are then plotted in a voltammogram such as in

fig. 3.4. The RE This is usually made of an inert metal (such as Gold or Platinum). The WE

is is typically made of, or coated with the a component of the redox couple being studied.

The solution usually a liquid with a high dielectric constant (e.g. water). A background

electrolyte such as an electro-chemically inert salt (e.g. NaCl or Tetra butylammonium

perchlorate, TBAP) and is usually added. The solution also must contain the reactant
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Figure 3.3: A schematic of a cyclic voltammetry experiment as discussed in 3.3.2.

being studied, typically in low concentration 10−3 M.

In order to maintain a constant potential whilst passing current to counter the redox

events occurring at the working electrode, a third auxiliary electrode which passes all the

current needed to balance the current observed at the working electrode.

Traditionally voltammetry experiments are used to investigate the behavior of redox

couples where the first component of the couple is in solution and the other component is

the WE. Relatively recently (1997), Armstrong, Heering and Hirst pioneered protein film

voltammetry, (PFV) in which the surface area of the WE is coated with a electro-catalytic

protein. Here, the enzyme is adsorbed onto the electrode surface and there is a direct

electron transfer. Electrons flow between the enzyme and the electrode, via the active site

of the enzyme when the electrode potential is appropriate (φ 6= E◦).

A typical cyclic voltammogram is show in fig. 3.4. Experimental CV voltammograms

may frequently exhibit complex behavior, however all of them tend to show a limiting

current flow in the high and low potential limits. One may immediately notice that this

experimental curve is markedly different from the theoretical curve shown in fig. 3.2. The

theoretical curve shows no limiting behavior at the potential limits. The key reason for this

is that the theoretical curve does not take into account any mass (substrate or reactant)

limiting behavior.

The limiting behavior seen in fig. 3.4 is due the development of a depletion layer on
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Figure 3.4: Experimental cyclic voltammogram of the O2
+e ←−→ O2

– reaction Scan rate:
100 V/s. Taken from [30].

the electrode surface [30]. As the redox potential increases farther away from the Nernst

potential, the reaction rate increases exponentially. This causes a rapid consumption of the

reactants in thin layer surrounding electrode face where the reaction is occurring. Once all

of the reactants have been consumed in this region, any additional reactant can only appear

in this region as the result of passive diffusion from the bulk to the depletion layer.

This behavior may be modeled by embedding the redox reaction in a depletion com-

partment of finite size. The redox couple reactants / products are only consumed produced

into this depletion compartment, and the are transferred to / from the electrode. An ad-

ditional set of diffusion reaction may be introduced to allow passive diffusion between the

bulk and depletion compartments. A schematic of the depletion and bulk compartments

are presented in fig. 3.5. With the addition of the bulk and depletion compartments, the

set of reactions now becomes.

Red + e←−→ Oxd

Reb
kd←−→ Red , kd = −DRe([Red]− [Reb])

Oxb

kd←−→ Oxd , kd = −DOx([Oxd]− [Oxb]) (3.29)

Here, the passive diffusion is conveniently introduced as an additional pair of trans-compartment
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Figure 3.5: The addition of a bulk compartment where all species concentrations are main-
tained at fixed values, a small depletion layer compartment, and the working electrode.

reactions, with the rate given by Fick’s law 3.60, and the rate of the redox reaction given

by 3.27.

The voltammogram from a redox reaction which includes the depletion layer compart-

ment, 3.6a generally corresponds well to typical experimental data 3.4. In such a system, the

concentration of the reactants is rapidly consumed by the reaction as the electrode potential

deviates from the Nernst potential. The current peaks here occur on each of the Nernst

potential then rapidly fall off to the maximal rate permitted by passive diffusion from the

bulk to the depletion compartments. This may seem counterintuitive, but consider that

just as the potential sweeps from just below to just above the Nernst potential, the reaction

is switching direction from proceeding in the reverse direction to proceeding in the forward

direction. In the reverse direction, the concentration of the reactants was replenished both

from the redox reaction itself and from diffusion from the bulk. Hence, the concentration

of the reactant is at is highest just as the potential is transitions. Thus, the current peaks

correspond to the location of the maximal reactant availability and electrode potential high

enough the drive the reaction. The normalized current, potential, and reactant, product

concentrations are shown in 3.6b.

The behavior of voltammogram for simple redox reactions is however very dissimilar to

the highly complex electro-catalytic reactions such as NADH oxidoreductase which is the

topic of this chapter. The structure of simple redox reactions is well known and corresponds

well to the formalism developed here. The behavior exhibited in the voltammograms for

more complex electro-catalytic enzymes such as NADH oxidoreductase is markedly differ-
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Figure 3.6: Simulation of a redox reaction with depletion layer. The addition of a depletion
layer compartment results in qualitative agreement with experimental data such as 3.4. Poten-
tial, φ is blue, concentrations are red and yellow, and current is red. All values in 3.6b have
been normalized to 1.

ent from simple redox reactions. Recently, Zu et. al. performed a series of PFV experi-

ments [82], in which they adsorbed the Iλ subunit of Complex I onto a protein film electrode

and measured a voltammogram for the reversible overall redox reaction of this subunit, 3.3.

This voltammogram is presented in fig. 3.7. The voltammogram in fig.3.7 exhibits behavior

which is explainable by 3.27 at the low potential limits, but high potential limits appear

to tend towards two different values rather than a a single mass limited current which is

the result of a mass transport limited system such as 3.29. Furthermore, as stated in [82],

the electrode was continuously rotated as to minimize the effects of any depletion layer.

Thus, the limiting currents appear to a result of a limiting transfer of the internal enzyme

catalysis, or a limiting behavior of the interfacial electron transport.

Even though the overall reaction for NADH oxidoreductase 3.3 is known, the mechanism

for this reaction is currently an active topic of research. A wide range of models currently

exist to model such electro-catalytic reactions. Léger et. al. developed a model Potential-

76



Figure 3.7: Experimental cyclic voltammogram of Iλ subunit of Complex I. Taken from [82].

Dependent Michaelis-Menten Model which has a limited number of free parameters and

is potential and substrate concentration dependent [51]. This model assumes fast mass

transport and interfacial electron transport. Léger et. al. also proposed another model

which provide more physical insight for certain CV wave forms [52]. This model also uses

a Butler-Volmer type term such as the one developed here. Sucheta et. al. developed a

widely used model which treats the interfacial electron transfer, enzyme catalysis and mass

transport as a set of resistors in series, each with a limiting current based on Michaelis-

Menten kinetics [74]. Heering et. al. also developed a set of models based on a Butler-

Volmer for the interfacial electron transport and a Michelis-Menten approach for including

a limiting current [39]. Reda et. al. developed a very sophisticated model model which

offers significant physical insight, however has a large number of free parameter [63].

The mechanism may not be understood well, but we can still model the reaction based

on experimental data and the known behaviors at upper and lower limits. We know that

at low limits, the reactions must be concentration and potential limited. Even though the

exact mechanism by which the Iλ reaction tends to different current limits in the upper

and lower potential limits is unclear, the experimental data in fig. 3.7 clearly indicates

there there are different current limits. The current limits also do not appear to agree with

the Levich equation [6], however these limits may be inferred from the experimental data.

Therefore, instead of uniform limiting current, we model the limiting current as a function
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of the electrode potential which tends to different values for the upper and lower limits as

ilim =
ir + if exp(φ+ E◦)

1 + exp(φ+ E◦)
, (3.30)

where if and ir are the experimentally observed forward and reverse limiting current values,

and φ is the electrode potential. In a simple redox reaction, rate of current change per

potential in the high and low potential limits is symmetric about E◦ and is determined by

the single α parameter. In the Iλ subunit reaction, the experimental data clearly indicates

that these slopes are not symmetric. In order to account for this behavior, the α parameter

may be split into two components, α which effect the slope of the forward or oxidation

reaction, and β which only effects the slope of the reverse reaction. With the separated α

and β parameters, the forward and reverse rates become

R̃+ = R+ exp

(
α
nF

RT
(φ+ E◦)

)
; R̃− = R− exp

(
−β nF

RT
(φ+ E◦)

)
, (3.31)

where again, R+ and R− are the forward and reverse mass-action rates. Finally, in order to

tie in the low potential and high potential limits, we will use a Michelis-Menten approach,

this will introduce a Michelis-Menten coefficient, km which determines where fast the low

and high potential limits intersect. Thus, the net rate of reaction becomes

R̃ = k◦
(
R+ exp

(
α
nF

RT
(φ+ E◦)

)
−R− exp

(
−β nF

RT
(φ+ E◦)

))
Rnet =

ir + if exp(φ+ E◦)

1 + exp(φ+ E◦)

R̃

km + |R̃|
. (3.32)

In order to estimate values for the Michelis-Menten coefficient, and the forward and

reverse coefficients, the data from [82] was digitized and the parameters were fitted. This

resulted in parameter values of

α = 0.07, β = 0.16, k◦ = 3.16× 10−6, if = 0.5, ir = 1.25, E◦ = 0.34. (3.33)

The current using the reaction rate specified in 3.32, with the above parameters is plotted
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Figure 3.8: Digitized experimental data from 3.7 and the electric current resulting from the
rate 3.32 evaluated with the parameters 3.33.

against the digitized data from [82] in fig. 3.8.

These results capture both the how and low electrode potential behavior of experimental

data with a minimal number of free parameters which are easily determined from readily

available experimental data. As with any empirical model, there is a danger of over-fitting

with too many parameters. The model developed here has minimal number of free param-

eters. Although the models developed in [63] more accurately fit experimental data, they

contain a large number (∼ 20) of free parameters.

Even though the model developed here does not attempt to accurately describe the

internal electro-catalytic mechanisms of subcomplex Iλ, it does accurately correspond with

experimental data and is generalizable to a variety of electro-catalytic reactions. Empirical

models are commonly used in many areas of chemistry such as molecular dynamics. Here,

no attempt is made to accurately describe the fundamental quantum mechanical nature of

chemical compounds, rather a series of Hookean spring forces are fitted to experimental data

and this is used to provide numerical solutions to a wide range of biophysical phenomena.

3.4 Spatial Electro-Chemical Kinetics

3.4.1 Electrical Double Layer

The presence of the dielectric decreases the electric field produced by a given charge density.

The laws of electrostatics in a polarizable medium are exactly the same as in vacuum,
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permittivity of free space, ε0 is replaced by the material permittivity, ε. The effective

electric field is always smaller in a dielectric medium as in vacuum.

Most eukaryotic cells maintain an out of equilibrium resting potential of −40 to −80

mV, with the cell interior typically being negative.

The number density of changed ions falls away exponentially from a charged membrane.

Beyond the Debye length, the potential is essentially zero and the charge distribution is

uniform. The charged ions are distributed in a thin layer of approximately the Debye

length in thickness. Under typical biological conditions, the Debye length is 0.7 nm [65].

All excess ionic charge will build up in this thin layer.

3.4.2 Physical Description

In a cyclic voltammetry experiment, the electrode face is very large relative to the diffusion

length, the electrode face is on the order of 1 cm2. Therefore, it is reasonable to model the

system as a one dimensional problem where we take advantage of the uniformity of the y

and z directions, and only consider the x direction.

The regions between the electrode face and the bulk solution can be treated as a series

of fictitious compartments. These compartments can be thought of as regions of space in

a finite element simulation. Unlike traditional multi-compartment simulations, there is no

physical boundary in this case, each compartment is in direct contact with the neighboring

compartments.

The left most compartment is treated as the bulk compartment. This region represents

the bulk solution and all species here are considered boundary species in that their values

are constant. The rightmost compartment is in direct contact with the electrode face. This

compartment is treated as the debye compartment. The electrical field produced by the

electrode will attract a significant amount of charged solutes to this compartment and the

majority of charge screening will occur here. The center compartment is treated as the

reaction compartment. Most of chemical reactions will occur here such as the oxidation /

reduction of NADH NAD+. The NAD oxidoreductase protein is anchored to the electrode

face, however the protein is rather long and extends into this region, therefore, the reaction

will occur here. The reduction potential will be the difference between the center of the
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reaction compartment and the electrode face. We can now isolate a single compartment as

in 3.9.

J1 J2

Figure 3.9: Flux of a substance through cube

Conservation of mass dictates that the the net accumulation of mass is equal to the sum

of the fluxes and the sum any local sources and sinks:

mass accumulation = flux in− flux out + source− sink

The flux of a substance in a particular direction is defined as the amount of that sub-

stance passing through a surface perpendicular to the velocity per unit time 3.10. Flux is

substance 
passing through
cross-section
(normal to flow)

cross section of area A

Figure 3.10: Flux of a substance through a surface

defined as rate of flow of a substance per unit area, and has dimensions of mass/area×time.

The term flux can also also refer the rate of change of amount of a substance participating

in a reaction. The SI unit of flux is mol/m2s. On inspection of 3.9, we can see that the

amount of substance entering the left side is J1(x)A, where A is the area of a cube face, and

x is the position of the left face. Similarly, the amount leaving the right side is J2(x+δx)A.

Any difference in the fluxes could only have come from, been deposited into the cube. Here

we have made the assumptions that the flux is uniform in the y an z directions. If we make
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the restriction that the flux must be a smooth, differentiable quantity in all directions, than

it is always possible to choose a cube of volume sufficiently small to ensure that the flux is

uniform in the perpendicular directions. We also make the assumption that geometry of the

region does not change during the duration δt. The change in the amount of a substance

in the cube per unit time δt is then V δc/δt, where V is the volume of the cube, c is the

concentration, and t is time. Taking the limit as δt and δc tend to zero, we may write the

rate of change of concentration in a region as

dc

dt
= −A

V
J. (3.34)

Here, the convention is that the magnitude of the flux vector is the flux vector dotted into

the surface normal vector of the cube face. The surface normals point outwards, a positive

change in concentration will result from a positive flux flowing inwards.

The total rate of change of a substance in a compartment is the sum of fluxes of that

substance. Fluxes can arise from passive transport, the electro-diffusive flux, active reactions

in the compartment and in the case of compartments separated by physical barriers, from

active transport. In the case of determining the electrical double layer potential, we will

first only consider passive diffusive flux.

The passive flux resulting from a concentration differential between compartments is

defined via Ficks law as

Jf = −D dc

dx
, (3.35)

where D is the diffusion coefficient, in units of length2/time. Fick’s law can be derived in a

variety of ways, but here, we will quickly review a derivation based on Brownian motion.

Returning to 3.9, but now consider two volumes on each side of a boundary plane. We can

define the average distance that a particle may travel per unit time τ as δ = vτ , where v is

the average particle velocity. Now, we define the size of each volume to be length δ on each

side, and a contact area of A. We make the assumption that δ is small enough to assume an

average concentration of c(t, x−δ/2) in the left volume, c(t, x+δ/2) to the right. The average

number of molecules in the left and right volumes are δAc(t, x − δ/2) and δAc(t, x + δ/2)
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respectively. From the random walk model, half the particles in each volume would cross

over into the other volume during a τ time span. So, the average number of particles being

exchanged in each volume during time τ is 1/2δAc(t, x − δ/2) − 1/2δAc(t, x + δ/2). The

flux J(x, t) between volumes then becomes

J(t, x) = − 1

τA

(
δAc(t, x− δ/2)

2
− δAc(t, x+ δ/2)

2

)
(3.36)

= − δ
2

2τ

(
δAc(t, x− δ/2)− δAc(t, x+ δ/2)

δ

)
. (3.37)

Taking the limit as δ → 0, we arrive at Fick’s first law, 3.35, where the diffusion coefficient

is defined as D = δ2/2τ .

The active components of the flux are driven by potential energy differences between

regions. In the diffusion dominated, low Reynolds number regime of our system, in the

presence of a potential energy gradient, the motion of the solute particles are still limited

by random collisions, such that the velocity, rather than the acceleration is proportional to

any applied force. In such regimes, drift velocity or average velocity of solute particles is

given by

v(x, t) = µF (x, t) (3.38)

= µ∇U(x, t). (3.39)

Here, v(x, t) is the drift velocity, µ is the mobility, and F and U are the applied force and

potential energy gradients. Returning again to 3.9, the geometry gives us that the molar

flux at any moment in time is given by the molar concentration measured at the face of the

cube times the drift velocity:

J(x, t) = c(x, t)vd(x, t) (3.40)

= µc(x, t)F (x, t) (3.41)

= µc(x, t)∇U(x, t). (3.42)

The mobility, µ given in m2mol/Js relates the applied force to the resulting drift velocity, and
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is given by the Einstein relation as

µ =
D

KbT
. (3.43)

The flux of charged species due to electrophoretic effects can be defined in terms of the

electrical potential phi, concentration c and ion mobility u as

Je = −ucdφ
dx
. (3.44)

The net passive flux is the sum of 3.35 and 3.44 as

Jp = −D dc

dx
− ucdφ

dx
. (3.45)

The diffusion coefficient is typically obtained experimentally, however, using the Nernst-

Einstein relation, it may be defined in terms of the mobilities as

D =
u

z

RT

F
, (3.46)

arriving at the Nernst-Planck electro-diffusion equation

Jnp = −D
(
dc

dx
+ c

zF

RT

dφ

dx

)
. (3.47)

The simplest physical described by the Nernst-Planck equation is depicted in Fig. 3.11.

Here, two uniform regions of space are separated by a fictitious boundary. The system

contains spatially invariant concentrations of Na+ and Cl–. Each compartment is held at

electrical potential, φ1 and φ2 respectively. The fluxes between “compartments” can be

determined by a näıve finite-difference approximation of the NP equation as

J12 ≈ −D
(
c2 − c1
δx

+ c1
zF

RT

φ2 − φ1
δx

)
(3.48)

J21 ≈ −D
(
c1 − c2
δx

+ c2
zF

RT

φ1 − φ2
δx

)
. (3.49)

And the net flux between compartments is the sum of J12 and J21. Note, that flux behaves
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Figure 3.11: Flux between two fictitious compartments

as a vectorial quantity in that it has a direction. The flux in the forward (left to right)

direction is written as

J = J12 + (−J21) (3.50)

=
D

δx

(
2 (c1 − c2) +

Fz (c1 + c2) (φ1 − φ2)
RT

)
. (3.51)

Here, Eqn. 3.51 describes the rate of mass transfer per unit time per unit area between

compartments 1 and 2. In general, each compartment may have different volumes. Taking

the both the contact area between compartments, as A, and their respective volumes into

account, we arrive at a pair of equations describing the rate of change of concentration in

each compartment due to the electro-diffusive flux between them:

dc1
dt

=
A

V1
J, (3.52)

dc2
dt

= − A
V2
J. (3.53)

This form suggests that all trans-compartment fluxes may be written as chemical reac-

tions. Any electro-diffusive (or any other flux for that mater) may be written as a chemical

reaction which consumes a substance in one compartment and creates an equivalent amount

of that substance in a neighboring compartment as

C1

AJ−−⇀↽−− C2 (3.54)
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where the reaction rate is defined as AJ . Note that a chemical reaction rate has units of

mass/time. The flux is defined as mass/area×time, thus must be scaled by the interfacial area

in order to correctly contribute to a reaction. This has the physical interpretation that as

the interfacial area tends to zero, the exchange of mass between compartments also tends

to zero.

For small potentials, the finite difference approximation is valid, however, one may

notice a key problem in that it allows the forward flux out of a compartment with zero

concentration. This will drive the concentration negative which is unphysical.

We make a few physical approximations that allow us to write a closed form of the

compartment flux. Following same line of reasoning as the Goldman-Hodjkin-Kats equation,

we make derive a flux relation between a pair of adjoining spatial regions.

We have already assumed a planar geometry, as in both the experimental voltammetry

system, and the biological mitochondrial membranes are significantly larger than the length

scale of the processes occurring at the membrane face. The x axis is normal to the electrode

plane, and we define a length l which is the center to center distance of each compartment.

This is the average length that a particle moves between a pair of compartments. We now

make the approximation that the average force that a particle feels as it moves from one

compartment to another is constant. Therefore, we may write the average force as the

difference in potential energies between each region,

F =
dU

dx
≈ U(l)− U(0)

l
=
Ul
l
. (3.55)

With 3.55 the flux equation 3.56 then becomes

Jk = −Dk

(
dck
dx

+
ck
KbT

Ul

)
, (3.56)

for the kth species. This now becomes an analytically solvable ODE. Re-arranging 3.56 to

an integrable form, we have,

dx =
dck

− Jk
Dk
− ckUl

KbT

. (3.57)

Integrating from the center of the source compartment on the left (x = 0) to the center of
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the destination compartment (x = l). Here, we assume ...

∫ l

0
dx = l = −KbT

Ul
ln

(
Ul
KbT

clk + Jk
D

Ul
KbT

c0k + Jk
D

)
, (3.58)

where clk is the concentration at x = l, the center of the destination compartment, and c0k is

the concentration at the center of the source compartment, x = 0. Solving for Jk, we arrive

at

Jk = −D Ul
KbT

clk − c0k exp (−Ul/KbT )

1− exp (−Ul/KbT )
. (3.59)

Numerically, eqn. 3.59 still has one issue, that being when the potential energy difference

tends to zero. Using l’Hôpital’s rule, we make take the limit of Ul → 0 of 3.59 and as one

would expect, we recover the finite difference approximation of Fick’s flux law as

Jk = −Dk

l

(
clk − c0k

)
. (3.60)

As an implementation detail, we check if Ul is near machine ε, and if so, return 3.60,

otherwise, 3.59. Accounting for the zero potential condition, the GHK flux is written as

ghk(D, z, c1, c2, z, φ, l) =


−Dk

l
zFφ
KbT

c1−c2 exp (−zFφ/KbT )
1−exp (zFφ/KbT )

|φ| <= ε

−Dk
l (c1 − c2) |φ| > ε.

(3.61)

One of the key advantages of this formalism is that all processes influencing the dynamics

of species may be written as chemical reactions. This allows a modeler to first start with a

basic set of processes and refine the model over time as further analysis and experimental

data become available. All future processes would simply be added as another reaction

without having to re-derive or fundamentally alter the basic model.

3.4.3 Non-Dimensionalization

From a numerical perspective, equations 3.51, 3.53 are often ill-conditioned in their present

form. The flux must be scaled by the surface area to obtain the correct physical units,

and the numerical values of each side are often vastly different. Even though the equations
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discussed here are are intended to describe a specific cyclic voltammetry simulation, their

form is completely general and the physics behind them is universal in any classical regime.

When using the physical constants appropriate for a cyclic voltammetry simulation, the

species amounts tend to 10−14 mol as the compartment volumes are in the 10−11 liter range.

The use of the present physical constants pose serious issues for numerical solution of these

equations as as the state variables are proportional to machine ε.

When solving any set of equations by numerical means, one has be very aware of issues

such as machine precision and round off error. Numbers are typically stored in software as

single or double precision floating point values 1. This specific number of bits implies that

floating point representations have finite precision and finite range. Floating point numbers

have a discrete spacing and minimum and maximum values. Machine epsilon (ε) is defined

to be the smallest positive number which, when added to 1, gives a number different from

1. This, in effect is the smallest difference between numbers that can be differentiated.

ε is typically approximately 10−16 for double precision numbers. Therefore, using double

precision, (1+1×10−16)−1 == 0, but (1+2×10−16)−1 == 2.2204×10−16. When numbers

approach the range of ε, the round off error becomes proportional the numbers themselves.

Therefore machine arithmetic can not be practically performed with the numbers are in

this range.

When implementing these equations in software, at one point or another, we have to

work with numbers and at this point the physical units are lost. If one does not take

care at this point, it is easy to get software in which all accuracy is lost due to round off

errors. On the other hand, non-dimensionalization typically avoids this since it normalizes

all quantities so that values that appear in computations are typically on the order of one.

From an algebraic perspective, it is typically clear how to non-dimensionalize an equation

with constant coefficient. However, if the dynamics values or coefficient vary by several

orders of magnitude, one has to choose a reference parameters such as volume and amount

in order to normalize the equations.

On the downside, the numbers non-dimensionalized equations produce are not immedi-

1Numbers may also be stored and operated on using arbitrary precision arithmetic, however it is relatively
rare that numeric simulations are performed using arbitrary precision. Arbitrary precision arithmetic is
typically orders of magnitude slower than conventional floating point arithmetic.
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ately comparable to ones we know from physical experiments. This is of little concern if all

we have to do is convert every output number of our program back to physical units. On

the other hand, it is more difficult and a potential source of errors.

3.5 Electrical Double Layer

3.5.1 Electrical Double Layer Models

The first model of electrolyte charge separation at an interface boundary was proposed

by Helmholtz in 1853 [38]. This simple model proposes that interfacial area between a

conducting electrode and electrolyte solution behaves as a parallel plate capacitor, thus

has the ability to store charge. This model states that an electrode has a charge density q

which is the result of an surplus or deficit of surface electrons. Any available charge in the

electrolyte solution will exactly balance the electrode surface charge. All charge is assumed

to rigidly held in a thin parallel surface on the electrode.

The volume directly outside the facial area of a voltammetry electrode can be approxi-

mated as set of three compartments. Each compartments here is just a physical location of

space, there is no membrane or other barrier separating them. All solutes are free to diffuse

between neighboring compartments.

We will consider the bulk region as having zero potential. In actuality, the average

potential of the bulk compartment is Ve/2, with Ve being the electrode potential.

The Debye compartment is a relatively thin compartment directly facing the electrode.

The majority of the charge screening layer will accumulate here, and in fact, a single com-

partment is exactly the Helmholtz double layer model describes [6].

The reaction compartment is where all of the reactions will occur. NAD Oxidoreductase

is large trans-membrane protein which in vivo is embedded into the inner mitochondrial

membrane [53]. In a voltammetry experiment, the matrix facing alpha subunit is cleaved

off and attached to an artificial voltammetry protein electrode. The electrode takes the

place of the mitochondrial double plasma membrane, and acts as an artificial charge carrier

substituting for the Quinones. The alpha subunit is itself a large protein, and extends into

the mitochondrial matrix well beyond the Debye layer. This protein experiences a potential
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difference of the electrode potential and the reaction compartment potential, which will

effect the electro-chemical potential determining whether it will catalyze the oxidation or

reduction of NAD or NAD+ respectively.

3.5.2 Electric field from the charged compartments

As the surface area of the electrode is significantly larger that the thickness of the com-

partments, we can approximate each compartment as a uniformly charge, infinite extent

slab. The charge per unit volume in the slab is ρ. We may draw a perpendicular Gaussian

cylinder enclosing the slab, with each face parallel to the slab face. The total electric flux is

ΦE = 2|Ez|A. We will only be concerned with the potential at the center of each compart-

ment, and at the exact center, the electric field produced by the compartment is zero (the

charge on each side of the centerline cancel each other). Thus we will only be concerned

with electric field produced by the compartment outside the compartment. Here, the total

charge enclosed is Qenc = ρAd, where A is the surface area of the Gaussian cylinder, and d

is the thickness of the compartment. The net electric field is then

Ez =


−ρd

2ε x < 0

ρd
2ε x > 0

(3.62)

For each electrode facing compartment, the compartment thickness terms, d cancels with

the volumetric charge density, ρ = q/v, yielding the net electric field produced by each

compartments as

Ez =


− q

2Aε x < 0

q
2Aε x > 0,

(3.63)

where A is the electrode facial area. Note, this is the same electric field produce by an

infinite sheet of charge, where σ = q/A.

Each region or compartment can be approximated as a slab of finite thickness, but

very large area relative to thickness. The concentration of all electrolytes within each

compartment is treated as constant. Application of Gauss’s law to a finite thickness slab

90



Bulk Reaction Debye

lr/2

lr

lr
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Vr Vd Ve

Figure 3.12: Physical layout of compartments. The region is divided into three compartments:
bulk, reaction and Debye. The reaction and Debye have lengths of lr and ld respectivly, and
by convention, the diffusion length from the bulk to reaction is lr. By convention, the bulk
compartment is grounded, and the reaction and Debye compartments have their potentials, Vr
and Vd measured at the center of the compartments. The electrode has a potential of Ve.

yields an electrical potential of


− q

2Aε x < −l/2

qx
Aεl l/2 ≤ x < l/2

q
2Aε x ≥ l/2,

(3.64)

where l is the thickness of the compartment, A is the area of the compartment, q is the

net charge, and x is the spatial coordinate. Integrating with respecting to the spatial

coordinate, x, and choosing the electrical potential of the center section evaluated at the

endpoints as the constant of integration of outer sections, we arrive at the electrical potential

for a uniformly charged slab:


− lq

8Aε +
q( l

2
+x)

2Aε x < −l/2

− qx2

2Aεl l/2 ≤ x < l/2

− lq
8Aε −

q(− l
2
+x)

2Aε x ≥ l/2.

(3.65)

The electrical potential and field for a uniformly charged slab are shown in 3.13.

The electrical potential is measured at the center of each compartment. The center of
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Figure 3.13: Electrical field and potential for uniformly charged slab

the reaction compartment in our coordinate system is located at x = lr, and the center of

the Debye compartment is located at x = 3/2lr + 1/2ld. The potential due to the reaction

compartment is obtained by shifting the slab potential 3.65 as:

Vr(x) =



(x− lr
2 )qr

2Aε − lrqr
8Aε x− lr < − lr

2

− (x−lr)2qr
2Aεlr

− lr
2 ≤ x− lr < lr

2

−(x− 3lr
2 )qr

2Aε − lrqr
8Aε x− lr ≥ lr

2 .

(3.66)

Similarly, the potential due to the Debye compartment becomes,

Vd(x) =


− (−4x+ld+6lr)qd

8Aε 2x < 3lr

− (−2x+ld+3lr)2qd
8Aεld

3lr ≤ 2x < 2ld + 3lr

(−4x+3ld+6lr)qd
8Aε 2x ≥ 2ld + 3lr.

(3.67)

It is assumed that the potential of the bulk compartment is that of the reference electrode,

which by convention is zero. In the absence of any electrolyte, the potential of the between

the bulk and the working electrode is a linear function which rises from zero to working

electrode potential, Ve(t). The potential due to the electrodes is refered to as V0 and is
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given by

Vo =
x

L
Ve. (3.68)

Using the principle of linear superposition, the net electrical potential due to the charged

layers and the elctrode is the sum of each component, this is given by

Vnet(x) = Vr(x) + Vd(x) + V0(x). (3.69)

The molar flux between each region is given by 3.59, this flux equation depends on the

electrical potential differences between each reagion. Therefore, the net electrical poten-

tial, 3.69 is evaluated at the center of the Debye and bulk compartments, these potentials

are given by

Vd = Vnet(xd) =
−
(
4l2d + 8ldlr + 3l2r

)
Qr + 8Ae(ld + 3lr)Ve

8Ae(2ld + 3lr)
(3.70)

Vr = Vnet(xr) = −2l2dQd + 7ldlrQd + 6l2rQd − 16AelrVe
16Aeld + 24Aelr

. (3.71)

Here, Qr and Qd are the total charge in the reaction and Debye compartments, A is the

interfacial area of the compartments, and e is the elementary charge.

A model was constructed which contains Na and Cl in all compartments.The values of

these reactants were fixed in the bulk compartment, and a constant electrical potential was

applied to the electrode, and the potential in the bulk was fixed at zero. The only reactions

in the system were the diffusion reactions between each compartment, these are given by

Nar ←−→ Nad : ghk(DNa, 1, [Nar], [Nad], Vd − Vr, lrd)

Nab ←−→ Nar : ghk(DNa, 1, [Nab], [Nar], Vr, lbr)

Clr ←−→ Cld : ghk(DCl,−1, [Clr], [Cld], Vd − Vr, lrd)

Clb ←−→ Clr : ghk(DCl,−1, [Clb], [Clr Vr, lbr). (3.72)
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3.5.3 Double Layer Capacitance Results

The capacitance of the electrical double layer model was measured whilst it was being

driven by a slowly varying potential (1Hz). Such a slow frequency was chosen so that the

charge distribution may equilibrate with the boundary conditions. This slow change in the

boundary conditions characterized an adiabatic process. In this regime, the capacitance vs

potential curves closely match that of the Stern double layer model. Note, the Stern (and

all of the classical models are only valid at steady state).

Using the Gouy-Chapman-Stern (GCS) approximation, the differential capacitance of

the Debye layer is given b [6]

Cd =

(
2εε0z

2e2n0
)1/2

cosh (zeφ/2KbT )

1 + (x2/εε0) (2εε0z2e2n0)
1/2 cosh (zeφ/2KbT )

, (3.73)

where e is the elementary charge, n0 is the bulk electrolyte concentration, z is the valence

number, φ is the applied potential, and x2 is the Stern layer thickness. For a detailed

derivation, see [6].

The GCS approximation assumes a double layer model where the inner Stern layer (clos-

est to the electrode face) has a tightly packed but limited ion concentration, and the longer

diffuse layer has an exponential decrease of ion concentration with the inner side having the

same concentation as the Stern layer, and the outer side has the same concentation as the

bulk medium. This models shows a quadratic behavior of the capacitance for low potentials

and approaches a fixed value for high potentials. The Gouy-Chapman (GC) model alone

assumes only a diffuse layer. This model shows correct behavior for low electrical poten-

tials, however as there is no limiting condition for large potentails, the ion concentration

in the diffuse layer will tend to infinity at large potentials. This results in the capacitance

also tending towards infinity, which is un-physical. A plot of the GCS model is shown in

fig. 3.14a.

Experimentally, the double layer capacitance shows low potential behavior similar to

both the GC and GCS models, and is of course limited at high potentials [35]. However,

unlike the GCS model, experimental results show that the capacitance at larger potentials

does not have the same limit for large positive and negative potentials. Also, there is a slight
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rise in capacitance as the low and high potential limits connect. Presently, a simple anallytic

model in the style of the GCS model which reproduces the different capacitance limits does

not appear to exist [6]. An experimental measurments of the double layer capacitance of

an Na-F solution is presented in fig. 3.14b.

The key behavior that both the CGS and experimental results show is that the capaci-

tance is strongly depedent on the bulk electrolyte concentration. A low bulk concentration

will show a drop in the capacitance for low potentials as the bulk concentration is reduced.

For high potentials, a strong electrical field is sufficient to overcome the natural diffusive

tendencies of the electrolytes and establish high ion concentraton Stern and diffuse layers

which results in the same high potential limit capacitance.
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(a) Analytic solution using the GCF approximation
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Figure 13.3.1 Differential capacitance vs.
potential for NaF solutions in contact with
mercury at 25°C. [Reprinted with permission
from D. C. Grahame, Chem. Rev., 41, 441
(1947). Copyright 1947, American Chemical
Society.]

where s is the dielectric constant of the medium, e 0 is the permittivity of free space, and d
is the interplate spacing.2 The differential capacitance is therefore

da
  

(13.3.2)

The weakness of this model is immediately apparent in (13.3.2), which predicts that
Q is a constant. We know from our earlier discussion that it is not a constant in real sys 
tems. Figure 13.3.1 is a dramatic illustration for interfaces between mercury and sodium
fluoride solutions of various concentrations. Variations in Q with potential and concen 
tration suggest that either s or d depends on these variables; hence a more sophisticated
model is clearly in order.

2H ere and elsewhere in this book we use the electrical relations appropriate to SI units, which lead to the
following definition of Coulomb's law (24):

F = qq
Aires ̂ r

The force F (in newtons) between two charges q and q' (in coulombs) is therefore related to the distance of
charge separation r (in meters), the dielectric constant of the medium e (dimensionless) and the permittivity of
free space e0. The last parameter is a measured constant equal to 8.85419 X 10~ 12 C ^ ^ m " 2 . This system has
the advantage that the electrical variables are measured in common units. An alternative is the electrostatic
system, where Coulomb's law is

qq'

er

The force F (in dynes) is related here to the charges (in statcoulombs) by the dielectric constant s and the
separation distance (in cm). Equations for the electrostatic system can be converted to corresponding relations
for SI units by replacing e with 4TTSSQ, and vice versa. Many treatments of interfacial structure involve
electrostatic units. They are recognizable by the absence of e 0 and the appearance of multiples of 4   in the
results. In some treatments, es0 is denoted as a single quantity, usually s, called the permittivity of the medium.

(b) Experimental double
layer capacitance from [35]

Figure 3.14: Analytic and experimental double layer capacitance results. Both show a strong
depencence of the double layer capacitance on the bulk ion concentration. The anallytic model
is a plot of 3.73 with the bulk ion concentrations of 0.01, 0.5 and 1 M.

In order the test the correctness of the multi-compartment model developed here, the

double layer capacitance was measured and compared to analytic and experimental results.

A model was constructed using the four reactions in 3.72, the boundary concentration of

Na and Cl was set to fixed values and the system was run to a steady state using the built

in steady state solver. The capacitance was measured via rule which summed to the total

charge in the Debye and reaction compartments and divided this by the applied electrode

voltage. These resulting C-V curves are displayed in fig. 3.15.

The results show that the multi-compartment model developed here has qualitative
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agreement with the the GCS model for low concentrations in the both the low and high

potential limits. However, for higher concentrations, the multi-compartment model exhibits

a slight rise in capacitance for low potentials before reaching the same high potential limit

when the electrolyte concentration is high. This does have the same qualitative behavior at

least in this respect as the experimental results. While this rise in capacitance is qualitativly

similar to experimental results, the physical origin of this behavior is thoought to arise from

the mutual electrostatic repulsion of ions in the double layer in directions parallel to the

interface [35]. The model developed here does take this into account, and the behavior

exhibited here is likely an artifact of coarse numerical descritization (large compertment

size).
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Figure 3.15: capacitance vs. voltage at different molarities of NaCl solution. The bulk
concentation of Na and Cl was fixed at 0.00001, 0.0001, 0.001, 0.01, 0.07 M

3.6 Conclusions

Surface redox reactions almost always have asymmetric limiting currents – the oxidation

and reduction limiting are typically different values. Electro-catalytic proteins have highly

complex internal mechanisms and a simple symmetric limiting current does not account for

the observed behavior. PFV experiments typically use a stirred electrode which is intended

to reduce or eliminate the depletion affects. Yet, PFV experiments show limiting currents
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even in the absence of depletion affects. In order to account for this complex behavior,

a relatively simple model which correctly explains most biological redox reactions with

minimal number of parameters was developed. This model has parameters have physical

meaning and easily obtained from common experiments. Using the approach developed

here, it is possible to develop relatively simple models of electro-catalytic proteins which

are easily calibrated with experimental data and are specifiable in a re-usable format.
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Chapter 4

Stochastic Bi-Stability Analysis

4.1 Introduction

Traditionally, there have been two methodologies for mathematically analysing a given

system: the deterministic, and the stochastic methodology. The deterministic view treats a

system as a completely predictable set of dynamics, described by a set of ordinary or partial

differential equations. The central tenant of the deterministic view is that if we know with

absolute certainly the current state of the system, the we can predict, for all time, all future

states of the system.

The stochastic viewpoint on the other hand deals with probabilities, not certainties: if

we have a measurement of the system at the current state, and we know the probability

rate equation that govern the system, we can predict the probability distribution of what

states the system will likely be in in the future.

The deterministic viewpoint has always been simpler and easier to deal with, it is the

way many scientists have been trained. There are however two problems with deterministic

approach, first we can not measure with absolute certainly the current state of any system,

and second, even if we treat a system classically (ignoring quantum effects), a deterministic

interpretation is only valid if we take into account all the degrees of freedom. Say, we have

one mole of an idealized classical gas, and we which to predict some future state, to do so

deterministically, we need to take into account 2× 3× 6× 1023 degrees of freedom. This is

obviously completely impractical. Deterministically, we are only dealing with a subspace,

or projection, so we have to treat it stochastically. Furthermore, consider Ising model,

it is well know that if solved deterministically, results in un-physical solutions which are
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fundamentally wrong.

This chapter will focus developing the theoretical foundations of the Gillespie stochastic

simulation algorithm, developing an integrator for the LibRoadRunner library that imple-

ments this algorithm, analyzing a simple bistable chemical system deterministically, and

stochastically, and will compare and contrast the results of both approaches.

4.2 A Bistable System

Consider the following tri-molecular chemical reaction occurring in a finite volume, with

low chemical concentrations:

A+ 2X
k1�
k2

3X

A
k3�
k4

3X. (4.1)

In this reaction, the concentration of substance A is held constant. Physically, this is usually

accomplished through the use of a device called a continuously fed stirred tank reactor or

CSTR [59]. This device maintains precise concentrations of chemical substances necessary

for laboratory experimentation of reactions of the type (4.1). This the simplest reaction that

Figure 4.1: A schematic of the gel reactor used by Swinney et al., taken from [59]. The
reactions take place in a gel region 2mm thick. The gel is confined between two permeable,
transparent glass plates. The reservoirs A and B contain “well stirred” mixtures of the reactants,
these are continuously pumped through a “continuously fed stirred tank reactor” or CSTR
where they are mixed until the concentrations are spatially uniform. The mixtures are allowed
to diffuse into the reaction chamber through the permeable glass plates.

can exhibit bistability [81], and has been extensively studied [25, 31, 32]. Simple bistable
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reactions of this type are quite rare in nature, in fact, the only physically observed instance of

such a simple system was made under exact laboratory circumstances by Swinney et. al [59].

Even though it is rare in nature, it is nonetheless, a physically realizable system, and is

the simplest one capable of bistable behavior, thus it provides an ideal system, a hydrogen

atom if you will for comparing deterministic to stochastic analysis. Deterministically, it will

be shown that such as system exhibits a super-critical bifurcation, whereby a single stable

fixed point becomes two stable fixed points, and the fixed point to which the system will

evolve is determined by the initial conditions. The true dynamics of the system are only

evident when the system is analyzed stochastically.

4.3 Deterministic Approach

The bistable system in (4.1) will first be analyzed using the traditional deterministic ap-

proach. First, we require a some background which describes the deterministic approach,

namely classical reaction rate kinetics.

4.3.1 Deterministic Analysis

Using the law of mass action and the rate constants, we can write a closed form expression

for the rate of change of the concentration of X as:

dx

dt
= −k2x3 + k1Ax

2 − k4x+ k3A. (4.2)

With the appropriate choice of constants,

B = k1A/k2

R = k4/k2

P = k3/k2.

we can non-dimensionalize (4.2) as:

dx

dt
= −x3 +Bx2 −Rx+BP. (4.3)
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In order to examine the steady state fixed points of (4.3), we set the left side to zero, and

examine the behavior of the right side. We can see that this is a cubic equation which

has either one root and two imaginary roots, or three real roots. Thus, we have a system

with either one stable fixed point, or two stable and one unstable fixed point, depending

on the slope evaluated at the root. The most important parameter in this system is B,

which has the effect of shifting the curve up or down, thus determining how many roots

exist. Varying the B parameter causes the system to undergo a super-critical pitchfork

bifurcation, whereby a single fixed point becomes a single unstable and a pair of stable

fixed points.

Such a system when analyzed deterministically only has one or two steady states. There

are no limit cycles and there can be no transitioning from one fixed point to another, unless

the system is sufficiently perturbed externally to shift the state into the basin of attraction

of the other fixed point. The choice of fixed point to which the system will evolve is based

entirely on the initial conditions.
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Figure 4.2: numerical simulations of the bistable system using parameters of B = 625, P =
9800, R = 114000. The left plot is a superposition of several simulations, each started at a
different initial value. The right plot is of the x′ = 0 nullcline. This system has three real roots
at 98.7, 178.3, and 347.9. The first and third roots correspond to the two stable fixed points,
and the middle root corresponds to the unstable fixed point.

4.4 Stochastic Approach

In order to analyze system (4.1) stochastically, we need to develop some machinery first,

namely the master equation. The following section will follow van Kampen’s [79] excellent

derivation.
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4.4.1 Master Equation

The conditional probability P1|1(x2, t2|x1, t1), using van Kampen’s [79] notation, with the

subscript Pn|m referring to the probability of n observations given m observations is given

by Bayes theorem as the joint probability of observing x1 at t1 and x2 at t2 is equal to the

probability of observing x1 at t1 by the probability of x2 at t2 given x1 at time t1 as

P2(x1, t1;x2, t2) = P1|1(x2, t2|x1, t1)P1(x1, t1). (4.4)

The conditional probability distribution must of course satisfy the standard probability

distribution requirements:

P1|1 >= 1∫
P1|1(x2, t2|y1, t1)dx1 = 1

P1(x2, t2) =

∫
P1|1(x2, t2|x1, t1)P1(x1, t1)dx1.

A Markov process is defined as a stochastic process with the property that for any set

of n successive times t1 < t2 < · · · < tn, the conditional probability density at time tn

given the observation xn−1 at time tn−1, is uniquely determined and is not affected by any

observations at previous times:

P1|n−1(xn, tn|x1, t1; · · · ;xn−1, tn−1) = P1|1(xn, tn|xn−1, tn−1). (4.5)

Here, P1|1 is called the transition probability. A Markov process is fully determined by

two functions P1(x1|t1) and P1|1(xx, t2|x1, t1). The entire process for n observations can be

constructed from them, e.g. for a three step process, we have:

P3(x1, t1;x2, t2, x3, t3) = P2(x1, t1;x2, t2)P1|2(x3, t3|y1, t1;x2, t2)

= P1(x1, t1)P1|1(x2, t2|x1, t1)P1|1(x3, t2|x2, t2). (4.6)
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For a Markov process, any future state depends only on the present state. It depends

neither on the previous history of the process nor on the way in which the present state was

reached.

By taking eqn. (4.6) and integrating over x2 and dividing both sides by P1, we arrive at

the Chapman-Kolmogorov (CK) equation:

P1|1(x2, t3|x1, t1) =

∫
P1|1(x3, t3|x2, t2)P1|1(x2, t2|x1, t1)dx2. (4.7)

The transition probability P1|1 does not depend on two different times, only on the difference

between the times, so van Kampen introduced the notation

P1|1(x2, t2|x1, t1) ≡ Tτ (x2|x1) , τ ≡ t2 − t1, (4.8)

where τ is defined as the time interval between times t2 and t1. The CK equation then

becomes

Tτ+τ ′(x3|x1) =

∫
Tτ ′(x3|x2)Tτ (x2|x1)dx2. (4.9)

The CK equation has a tendency to be inconvenient or difficult to deal with, so it is fre-

quently re-cast in terms of the master equation. The master equation is a more convenient

form of the CK equation which is obtained by looking at the limit of vanishing time interval

difference τ ′. If we Taylor expand the transition probability Tτ ′ about zero for small τ ′

Tτ ′(x3|x2) ≈ δ(x3 − x2) + τ ′W (x3|x2) +O(τ ′2). (4.10)

As τ → 0, the delta function indicates that there is a small probability that a state transition

occurs, but this probability should tend to zero as τ → 0. W (x3|x2) is the time derivative

of the transition probability at τ ′ = 0, i.e., the transition probability per unit time from

x2 → x3. In order for this expression to be normalized properly, the integral over x3 must

equal 1, so (4.10) needs a correction term of (1− α0τ
′) with the delta which indicates that

even though there is a small probability that a transition occurs as τ ′ → 0, this should not

go to zero. Formally, the (1 − α0τ
′) term is the probability that no transition takes place
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during the time interval τ ′ so the α0 coefficient is defined as

α0(x2) =

∫
W (x3|x2)dx3. (4.11)

Incorporating the correction term, dividing by τ ′ and taking the limit of τ ′ → 0, we arrive

at the differential form of the CK equation called the master equation:

Tτ ′(x3|x2) = (1− α0τ
′)δ(x3 − x2) + τ ′W (x3|x2)

∂

∂τ
Tτ (x3|x2) =

∫
[W (x3|x2)Tτ (x2|x1)−W (x2|x3)Tτ (x3|x1)] dx2. (4.12)

This can be re-written in a more useful form by noting that all transition probabilities are

for a given value x1 at time t1 as

∂P (x, t)

∂t
=

∫ [
W (x|x′)P (x′, t)−W (x′|x)P (x, t)

]
dx′. (4.13)

Finally, if the range of the stochastic variable x is discrete set of states such as an integer

number of molecules, we can replace the integral with a summation:

dpn(t)

dt
=
∑
n′

[
Wnn′p

′
n(t)−Wn′npn(t)

]
. (4.14)

This form of the master equation makes physical interpretation much clearer, in that we

can see that it is a gain-loss equation for the probability of each state. The first term is the

gain due to transitions from states n′, and the second term is the loss due to transitions

into states n′.

n−1 n n+1 n+2 n+3

t+(n−1) t+(n) t+(n+1) t+(n+2)

t−(n+3)t−(n+2)t−(n+1)t−(n)

Figure 4.3: Four s steps of a Markov chain, n−1, n, n+1, n+2, · · · are the states of the chain,
and t+, t− are the transition probabilities between each state.

Many stochastic processes are a special type called birth-death processes, or one-step
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processes. One-step processes describe systems with integer numbers of particles or items,

such as individual populations, active neurons, etc. These processes are continuous time

Markov processes whose range consists of the integers, {x : x ∈ Z}, and whose transition

matrix W only permits jumps between adjacent states,

Wnn′ = t+(x′)δx,x′+1 + t+(x′)δx,x′−1 (4.15)

where t+(x), t−(x) are the transition probabilities per unit time of the observation x transi-

tion to x→ x+1, x→ x−1 respectively. The general master equation (4.14) then becomes

∂tP (x, t|x′, t′) = t+(x−1)P (x−1, t|x′, t′)+t−(x+1)P (x+1, t|x′, t′)−(t+(x)−t−(x))P (x, t|x′, t′),

(4.16)

or the rate of change of the probability of x, t given x′, t′ is equal to the weighted probabilities

of removing a particle plus the probability of adding a particle minus remaining in the same

state.

This is called a differential algebraic delay equation, and in general has no analytic

closed form solution. It is possible to solve such systems numerically [5], however as of

this writing, no known computational mathematics system such as Mathematica, Maple or

MATLAB implement such solvers. Under certain circumstances such as a single variable

birth-death processes like the bistable system investigated here (4.1) it is possible to write

a closed form solution for the stationary distribution of the master equation (4.14).

In order to solve for the stationary probability distribution Ps(x), we re-write the master

equation with the probability current J(x),

J(x) = t−(x)Px(s)− t+(x− 1)Ps(x− 1). (4.17)

The probability current is anti-symmetric and represents the net flow of probability from

Ps(x) to Ps(x− 1). As any fool can plainly see, the net flow of probability in a stationary
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distribution from any given state x to any other state x+ ε is zero:

J(x+ 1)− J(x) = 0. (4.18)

When we consider that a system can not have a negative number of particles, the negative

transition probability (probability of reducing the number of particles) is zero when the

particle count is zero:

t−(0) = 0

P (x, t|x′, t′) = 0 ∀{x < 0 or x′ < 0}. (4.19)

Substituting (4.19) into (4.18), and summing (4.18), we have

J(0) = t−(0)Ps(0)− t+(−1)Ps(−1) = 0,

0 =
x−1∑
z=0

(J(z + 1)− J(z)) = J(x)− J(0), (4.20)

which implies that the probability current at the x boundary is zero J(x) = 0. Thus, we

can write a closed form expression for the stationary probability distribution:

Ps(x) =
t+(x− 1)

t−(x)
Ps(x− 1), (4.21)

which has the closed form solution of

Ps(x) = Ps(0)

x∏
z=1

t+(z − 1)

t−(z)
. (4.22)

4.4.2 Stochastic Analysis

Now that we have all the preliminaries out of the way, we can proceed with expressing the

bistable system in master equation form, and analyzing the results.

As the concentration of A is fixed by definition, we are only concerned with the quantity

of X particles, we will call this x. There are four reactions involved in this system. The

first two create x particles with the forward rate constants of k1 and k3, and the second two
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consume x particles with rate constants of k2 and k4. Thus the two transition probabilities

are

t+(x) = k1Ax(x− 1) + k3A

t−(x) = k2x(x− 1)(x− 2) + k4x. (4.23)

This pair can be non-dimensionalized using the same set of constants from the deterministic

analysis, (4.3). The corresponding deterministic equation is:

dx

dt
= t+(x)− t−(x)

≈ −k2x3 + k1Ax
2 − k4x+ k3A (4.24)

= −x3 +Bx2 −Rx+BP. (4.25)

The approximation here was made for x� 1, setting x(x− 1)(x− 2) ≈ x3. Compare with

the deterministic equation derived using the law of mass action (4.3). For large values of

x, the master equation, when analyzed deterministically exactly recovers the deterministic

equation derived using the law of mass action.

The stationary probability distribution from (4.22) is then

Ps(x) = Ps(0)
x∏
z=1

(
B ((z − 1)(z − 2) + P )

z(z − 1)(z − 2) +Rz

)
. (4.26)

This is a closed form expression which can be evaluated exactly. The maxima of the sta-

tionary probability distribution will occur when the gain and loss transition probabilities

are exactly equal, t−(x) = t+(x). For the bistable system analyzed here, these occur when

Bx(x− 1) + P )− (x(x− 1)(x− 2) +Rx) = 0. (4.27)

Note, that for large x, these correspond exactly with the stable fixed points of the deter-

ministic mass action equation (4.3).
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4.4.3 Stochastic Simulation and Gillespie’s Algorithm

The master equation formulation is analytically solvable under curtain circumstances, and

direct numerical solution appears to be quite rare. The most commonly used method for

simulating processes that can be described with a master equation is through the use of

Gillespie’s algorithm [33].

Intuitively, Gillespie’s algorithm reflects the fundamental idea that at each step in a

single-step birth-death process, some reaction occurs, and that reaction drives the system

to the next state. Essentially, Gillespie’s algorithm makes the assumption that the proba-

bility that the jth reaction will occur once in the next infinitesimal time interval [t, t + h]

is approximately equal to aj(x)h, the propensity function, a measure of how likely that

particular reaction is to occur. A random number r for each reaction is chosen, and if

aj(x)h > r holds, then we assume the reaction occurs during [t, t+ h] and the state of the

system are updated according to the state shift vector vj corresponding to that reaction as

follows x(t+ h) = x(t) + vj .

More formally, Gillespie’s algorithm can be derived by considering the evolution of a

stochastic processes. A memory-less process is one in which past events have no influence

on current events. More precisely, a memory-less process is a stochastic process in which

events occur continuously and independently of one another. A frequently used example is

radioactive decay. If one observes a sample of radioactive material for some time interval

t and either observes or does not observe any events has no influence on whether or not

an event will occur in the next time interval δt, i.e. given that there were no events at

time t, the probability density between t and t+ δt is constant, say c, so the probability of

observing an event in [t, t+ δt] is c · δt. In order to determine the probability of observing

an event at time t0 + t, we need to probability density p(t)dt of observing an event between

t and t + δt. We can define the probability density of not observing an event up to time

t + δt as the probability of not observing an event up to time t and the probability of not

observing an event between [t, δt], or P (P0(t) ∩ P0(t + δt)). For small δt, the probability

of not observing an event is 1 − cδt, so with the standard process of letting δt → 0, and
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solving , we have:

P0(t+ δt) = P0(t)(1− aδt)
P0(t+ δt)− P0(t)

δt
= −cP0(t)

d

dt
P0(t) = −cP0(t)

P0(t) = e−ct. (4.28)

The cumulative probability density of observing an event between time [0, t] is then 1−P0(t).

If no events occurred at time t = 0, then P0(0) is 1. P0(t) is the probability density of not

observing an event up to time t, so the probability density of actually observing an event is

then P (t) = 1−P0(t). This is however a cumulative distribution function, to get the actual

probability of observing an event at time t, we need to differentiate it, so,

p(t) =
d

dt
P (t) = ce−ct. (4.29)

We now need to determine what is the probability density of the first reaction event. Con-

sider a reaction j which has a rate constant (from the law of mass action) of cj . The

propensity or activity is the the number of ways the reaction can occur. If the reaction is

of the kind A + B → something, then the propensity cjnAnB where nA and nB are the

number of available items of A and B. If the reaction is of the type 2A→ something then

the propensity is 1
2cjnA(na − 1). If we call the propensity αj , then the probability density

the the first reaction occurs at time t is:

pj(t) = αje
−αjt.w (4.30)

Note that the propensity function αj is time dependent. The propensity changes as a result

of reactants being produced or consumed.

Now consider instead of a single event, a system in which there could be i = 1, · · · , n

reactions of type j = 1, · · · , r. If the system started at time t = 0, we can call the time

at which the first reaction of type j occurs as tj . In order to calculate the probability
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density that the first reaction in the system if of type i occurs, we first need to calculate the

probability density that a reaction i occurs before any other reaction given that it occurs

at time ti, thus:

p(ti < t1)p(ti < t2) · · · p(ti < tn) =
∏
j 6=i

p(ti < tj) =
∏
j 6=i

p(tj > ti). (4.31)

On substitution of the exponential distribution (4.30), we have

∏
j 6=i

p(tj < ti) =
∏
j 6=i

∫ inf

ti

αje
−αjtdt =

∏
j 6=i

e−αjti = e−λtieαiti , (4.32)

where λ is the total activity of the system given by λ =
∑n

j=1 αj . From here, we can

compute the probability density p(i, t) that the reaction i is the first reaction and that it

occurs at time t:

p(i, t) = e−λteαitαie
−αt = αie

−λt. (4.33)

Thus given any initial condition, we can now calculate the probability of any reaction i

occurring. Gillespie’s algorithm iterates over all possible reactions, and chooses the most

likely reaction to occur.

Implementation of Gillespie’s algorithm

Suppose the state of the system (number of particles of each species, and consequently,

the propensity functions αj) is known at time t. We call s the sum of all αj(t). Then

do the following steps: 1: find the time h after t at which the next reaction will take

place, by drawing a random number from an exponential probability density function of

rate p(h) = s exp(−s h). Now the most likely reaction which will occur at time t + h. 2:

Draw a random number from a uniform distribution between 0 and 1. If that number falls

between 0 and a1/s, choose reaction 1, between a1/a0 and (a1 + a2)/s choose reaction 2

and so forth. 3: the chosen reaction is then evaluated. This is accomplished by adding the

current state of the system with the state vector that corresponds with the chosen reaction.

Thus the values of the αj ( which depend on the particle counts) also change for the next

iteration. One then goes back to step 1 of the algorithm with a new distribution of molecules
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at time t+ h . The process is reiterated for as long as one wishes to follow the evolution of

the system.

Algorithm 1 Implementation of Gillespie’s algorithm

input n← # of iterations
input r ← # of reactions
input v ← state shift matrix
input x← initial conditions
t← 0
for i = 1 to n do
i← i+ 1
s←∑r

i=1 ai(x)
p1← uniform random number in (0, 1]
p2← uniform random number in (0, 1]
h← −log(p1)/s
t← t+ h
cts← 0
for j ← 1 to r do

if ctr < p2 < ctr + aj/s then
x(t+ h)← x(t) + vj

end if
ctr ← ctr + aj/s

end for
end for

Gillespie’s algorithm was originally prototyped in Mathematica and MATLAB. There

are large number of conditional operations, therefore, we should expect performance to be

rather sluggish when using interpreted languages. In both languages, Gillespie’s algorithm

took approximately 5 minutes of wall time for every second of simulation time.

To demonstrate the modular LibRoadRunner architecture, an GillespieIntegrator

object was created which implements the Integrator interface. This was accomplished

with about a day’s worth of programming effort. Currently, the GillespieIntegrator

does not yet support SBML events, however this is a planned future addition.

With the native C++ version of the Gillespie SSA, performance improved to approxi-

mately 2 - 3 seconds of wall time for each second of simulation. This is a dramatic improve-

ment, and underscores the point that even though interpreted languages have made great

strides in the past decade, for any series simulation which consists of non-vectorizable code,

one must resort to compiled languages such as C++.
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4.4.4 Results

A series of simulations were performed varying B, and holding P = 9800, R = 114000 con-

stant. The parameter B has the effect of shifting the probability min / max equation (4.27)

up or down. Thus it causes the system to transition from single humped probability distri-

bution to a bimodal distribution. The single humped distribution corresponds to a deter-

ministic equation with a single stable fixed point, and the bimodal distribution corresponds

to a deterministic equation with a pair of stable fixed points. For each simulation the system

was run for two time units of simulation and was sampled every 0.00005 time units; thus

each run has 40, 000 data points.

The results are shown in Figures 4.5 - 4.21. The left plot is of the right-hand side of the

deterministic equation (4.3). Again, the zeros of the deterministic equation correspond to

the maximum probability values. The center plot contains both the analytic solution of the

stationary probability distribution (4.26) (Note, this is a probability density function.) and

the data points from the simulation performed using Gillespie’s algorithm. All data points

from the stochastic simulation were collected and inserted into a histogram. Note that the

histogram from the simulation almost perfectly matches the predicted distribution from the

master equation. When the simulation was run longer than two time units, the simulation

histogram matches the analytic solution even more closely. The right-most column is a time

series plot of the simulation. Note that when the system has a unimodal peak, the time

series fluctuates about that peak; when the system has a bimodal distribution, the system

will fluctuate about both peaks and occasionally tunnel between each peak.

It is very informative to compare the results of the stochastic to the deterministic sim-

ulation as displayed in Figure 4.4. Note that the probability peaks correspond exactly with
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Figure 4.4: numerical simulations of the bistable system using parameters of B = 625, P =
9800, R = 114000. The left plot is a superposition of the original deterministic simulation from
Figure 4.2, and the time series for the first 0.25 time units of the stochastic simulation. The
right plot is the analytic probability density function, and superimposed results of the stochastic
simulation.
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Figure 4.5: nulcline and probability distribution for B = 608

the deterministic fixed points.
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Figure 4.6: nulcline and probability distribution for B = 610
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Figure 4.7: nulcline and probability distribution for B = 612
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Figure 4.8: nulcline and probability distribution for B = 614
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Figure 4.9: nulcline and probability distribution for B = 616
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Figure 4.10: nulcline and probability distribution for B = 618
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Figure 4.11: nulcline and probability distribution for B = 620
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Figure 4.12: nulcline and probability distribution for B = 622
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Figure 4.13: nulcline and probability distribution for B = 624
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Figure 4.14: nulcline and probability distribution for B = 626
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Figure 4.15: nulcline and probability distribution for B = 628
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Figure 4.16: nulcline and probability distribution for B = 630
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Figure 4.17: nulcline and probability distribution for B = 632
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Figure 4.18: nulcline and probability distribution for B = 634
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Figure 4.19: nulcline and probability distribution for B = 636
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Figure 4.20: nulcline and probability distribution for B = 638

100 200 300 400 500 600

-4 ´ 106

-2 ´ 106

0

2 ´ 106

4 ´ 106

6 ´ 106

8 ´ 106

1 ´ 107

100 200 300 400 500 600

0.002

0.004

0.006

0.008

0.010

Figure 4.21: nulcline and probability distribution for B = 640
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4.4.5 Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) is a variation of classic root-mean square analysis of a

random walk. It is used for determining the long-range correlations (or self affinity) in time

series. This method has several advantages over other forms of scaling analysis; chiefly, it

is less susceptible to noise effects. Briefly, the time series of length N that is to be analyzed

is first integrated, which converts a bounded time series xt into an unbounded process Xt:

Xt =
t∑
i=1

(xi − 〈x〉). (4.34)

Then the integrated time series is divided into time windows of equal length, n. In each

window of length n, a least squares line, which represents the trend in that window, is

fit to the data. The slope and y intercept of the least squares fit are denoted an and bn

respectively. The y coordinate of the straight line segments is denoted by yn(t) = ant+ bn.

Next the integrated time series Xt is detrended by subtracting the local trend, yn(t), in each

window. The root-mean-square fluctuation of the integrated and detrended time series is

calculated by

F (n) =

√√√√ 1

N

N∑
i=1

(Xi − yn(i))2. (4.35)

This evaluation is repeated over the whole signal at a range of different time scales (window

sizes) n to characterize the relationship between F (n), the average fluctuation and the

window size, n. A log-log plot of n and F (n) is then created. The scaling exponent α is

calculated as the slope of a least squares fit of log(n) vs. log(F (n)). Typically, F (n) will

increase with window size. A linear relationship on a log-log plot indicates the presence of

power law (fractal) scaling. A straight line on this graph (i.e., low error in the least squares

fit) indicates a high statistical self-affinity.
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The value of α determines the character of the time series. These are summarized as:

α < 1/2 : anti-correlated

α ≈ 1/2 : uncorrelated, white noise

α > 1/2 : correlated

α ≈ 1 : 1/f -noise, pink noise

α > 1 : non-stationary phenomena such as random walk or unbounded Brownian noise.

The stochastic simulation is driven by a pair of random uncorrelated numbers, and thus can

be considered white noise. This section of analysis seeks to determine whether the type of

noise observed in the simulated time series is correlated: i.e., is it 1/f or pink noise which

has an α ≈ 1. This type of noise is said to have long range correlations, where the value at a

particular step is strongly correlated with the previous steps. This long term correlation is

an indication that information at previous times is being propagated forward in time. Pink

noise is in contrast to white noise, where the value at any step is completely uncorrelated

with any value at previous steps.

In order to examine how well, if at all the system is self correlated, the B parameter

was varied from 575 to 675, and all other values were held constant. This range of B clearly

transitions the system from a unimodal to bimodal, and back to a unimodal probability

distributions. The measured α remained very close to 0.5 for unimodal distributions, and

approached 1 for the bimodal distributions. This is an indicator that the system has no self

affinity when it is a unimodal state, and has a high degree of self affinity when in a bimodal

state. These results were completely unexpected, as to our knowledge, this type of analysis

has never been performed before.

The results of the DFA can be seen in Figure 4.22
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Figure 4.22: A plot of the α exponent from the detrended fluctuation analysis. Here, the B
parameter was varied from 575 to 675, while the other two parameters, P = 9800, R = 114000.
were held constant. A Gaussian was fitted to the α exponents.

4.5 Lattice Lotka Volterra

A series of lattice stochastic simulations were also run. In these type of simulations, each

lattice site contains an instance of a stochastic system, that is evolved with Gillespie’s

algorithm. The equation describing each site is

dg

dt
= bg(t)

(
1− g(t)

c1

)
− dgg(t)− pg(t)r(t)

dr

dt
= e p g(t)r(t)− drr(t),

where g and r are the populations of prey and predator respectively, b is the prey birth

rate, c1 is the carrying capacity, dg is the natural prey death rate, p is the conversion, or

predation rate, and dr is the predator death rate. Each lattice site is coupled to its nearest

neighbors via a diffusion Monte-Carlo algorithm. Preliminary results were presented in

class. An initial investigation indicates that there is a clear phase transition as the diffusion
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constant, or the conversion rate is varied. These preliminary results indicate the need for

further analysis.

4.6 Conclusions

This chapter developed the basic governing equation, the master equation for stochastic dy-

namics, presented an algorithm for simulating stochastic dynamics, compared the simulated

results favorably with the analytic results. This chapter has also compared the results of

stochastic analytics and simulation to deterministic analytics and simulation, and has shown

that the deterministic approach is often only an approximation to stochastic results, and in

the case of the bistable system, the deterministic approach is not capable of representing

the full dynamics of the system.

A detrended fluctuation analysis was also performed on the bistable stochastic simula-

tion which indicated that the system must have a bimodal probability distribution in order

for the system to display 1/f or pink noise colored output. To my knowledge, this type

of analysis has never been performed on this particular stochastic dynamical system. The

prevalence of 1/f noise in nature might indicate that the underlying system has a bimodal

probability distribution, or at least has higher modality than one.

A framework has been developed to allow large scale simulations of many coupled

stochastic dynamical systems on distributed memory supercomputers. At the time of this

writing, only a cursory analysis has been performed on these results, however the key point

is that a framework now exists for future work.
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Chapter 5

Conclusions and Future Work

Despite having been publicly available for a relatively short time as the time of writing, the

LibRoadRunner library is already being used at a diverse set of places including:

• University of Washington. The LibRoadRunner library is used here as a key compo-

nent of the Tellurium project [40], a MATLAB like environment for systems biology.

• Indiana University. The LibRoadRunner library replaced the SOSLib SBML engine in

CompuCell3D, which resulted in a 10 fold performance improvement and significantly

simplified code.

• University of Southern California. The LibRoadRunner library is enabling heteroge-

neous modeling and large scale parameter optimization in a multi-scale synaptic and

neuronal modeling.

• Charité - Universitätsmedizin Berlin

• Stellenbosch University, South Africa, JJJ Group for Molecular Cell Physiology

To the best of our knowledge, the LibRoadRunner library developed here is the first

SBML simulation engine which supports true JIT compilation. This results in high per-

formance simulations. The library is the only known engine which allows users to specify

arbitrary callbacks which enables heterogeneous modeling and highly customizable simu-

lations. All code is liberally licensed under the Apache license, and along with extensive

documentation, is available at [28]
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5.1 Jacobian Automatic Differentiation

Numerically calculating the Jacobian when an implicit (stiff) solver is used is one of the

most time intensive steps of the simulation process. Numerical estimates the Jacobian can

also introduce round-off errors in the discretization process. As the AST exists for the state

vector, it would be possible to analytically calculate the Jacobian directly from the AST,

however symbolic differentiation symbolic can lean to inefficient code as the number of terms

in the symbolic partial derivative are frequently much larger than the original function.

Automatic differentiation (AD) [37] is a numerical technique computing analytic deriva-

tives of programs (rather than mathematical expressions) which solves all of these problems.

AD is based on the idea that every programming language provides a limited number of

elementary mathematical functions (such as sin, cos, exp, etc.). Every function computed

by a program may be viewed as the composition of these intrinsic functions. The analytic

derivatives for these elementary functions are known and can be combined using the chain

rule. Effectively, AD is a source transformation which yields another function which may be

JIT compiled. AD may be more efficient then symbolic differentiation as function generated

using AD will have at most a small constant factor more arithmetic operations than the

original function.

5.2 Mutable Conserved Moieties

The scheme presented in § 2.5.3 currently works when a user modifies the value of a con-

served species, however it does not allow modification of these values from internal SBML

events. The method presented in this section will be moved to the JIT generated code

produced by the symbol resolver. This will allow events to modify conserved species.

5.3 Better Steady State Solvers

Many sub-cellular reaction networks operate on a very fast time scale relative to inter-

cellular diffusion. When libRoadRunner is used in cellular and virtual tissue simulators,

it make simulations more efficient if the sub-cellular reaction network were just driven to

a steady state using the current external chemical concentrations. However, the currently
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used steady state solver, NLEQ [58] has some issues. Because the entire library was designed

using a component based design, § 2.3.2, it is very easy to new capabilities such as new

steady state solvers. A pair of steady state solvers, one based on Sundials’ KINSOL [42],

and another one based on COPASI’s [44] steady state solver are planned.

5.4 Different Integrators

Currently, the explicit and implicit integrators from the Sundials suite are used in addition

to a simple Runge-Kutta integrator and a Gillespie integrator. An integrator based on

LSODA is planned as well as the newly developed ARKode [64] integrator which will be

part of the next release of the Sundials suite. An integrator based on the banded solver

from CVODE will also be developed. In combination with automatic detection of the

banded structure of the Jacobian could speed up performance tremendously and would

save a significant amount of space for the Jacobian matrix which is especially interesting in

the context of very large systems.

5.5 Script extension to use standard scripting languages

The most interesting planned addition is the introduction of the <script> tag to SBML via

an extension. Arguably the greatest annoyance of using the SBML language is the necessity

of specifying functions, rates and mathematical expressions via MathML. It has been 14

years since the first introduction of MathML and the specification is still largely unsup-

ported. The WebKit and Mozilla based browsers have limited support, and all MathML

support has been expunged from the Google Chrome based browsers. Mathematica, one

of the few applications exports MathML generates MathML that is incompatible with the

subset that is officially supported in SBML.

From a user perspective, MathML is incredibly verbose, just to specify a basic expression

such as “x + 2 + (y * 5)” required approximately 14 lines of MathML. The subset that

is supported in SBML is extremely limited: officially, the MathML function in SBML do

not even support features that have been rudimentary in programming language since the

first inception of FORTRAN 57 such as local variables or iteration. Neither are other basic
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constructs officially supported such as recursion. This opinion is based partially on the fact

that author of this dissertation was one the early adopters of MathML as evidenced by the

MathML layout and rendering engine I developed in 2003 [27].

It goes without question that SBML is an excellent language for specifying the structure

of a biochemical model, much as HTML excels at specifying the structure of a document.

But HTML uses the widely used standardized language JavaScript to specify dynamic

content. Following the HTML paradigm, we plan on introducing an <script> tag to SBML,

exactly as is done in HTML where uses may specify functions in a standardized scripting

language such as JavaScript or Python. The remainder of the SBML content would be

completely unchanged and could reference a JavaScript or Python function exactly the

same way as it currently references a MathML function. This tag will be added using the

existing SBML extension mechanism to label as an extension.

JavaScript is available in any extant operating system and existing JavaScript or Python

interpreters are very simple to embed into existing applications. We will go a step further

and will JIT compile the user specified script functions with the current JIT compilation

machinery that was developed in this thesis.
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Appendix A

Acronyms

SBML Systems Biology Markup Language

JIT Just In Time Compile

L3V1 Level 3, Version 1

CWSC Continuous Well-Stirred Compartments

LLVM Low-Level Virtual Machine

HTML Hypertext Markup Language

RK Reaction Kinetics

FBA Flux Balance Analysis

ETC Electron Transport Chain

API Application programming interface

LHS left hand side

DOM document object model
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