Multiscale model of the human cardiovascular system: healthy and pathological behaviors
Cardiovascular system model (CVS)
Hemodynamics

- Flow through the vessels

\[Q = \frac{P_o - P_i}{R} \]

- Volume variation

\[\frac{dV}{dt} = Q_{in} - Q_{out} \]

- Cardiac valves (mitral, tricuspid, aortic and pulmonary)

= unidirectionnality of the blood flow
Hemodynamics

- Pressure-volume relationship:
 - Passive chamber: \(P = E \cdot V \)
 - Active chamber (both ventricles): \(P \equiv E \cdot V \)

\[P = E(t) \cdot V \]

Varying-elastance model

Input function

[Graph showing pressure-volume relationship with elastance of the chamber]
Cardiac contraction

- From macroscopic to microscopic scale

- From microscopic to macroscopic properties: Franck-Starling law

Adapted from Klabunde, R. (2011). Cardiovascular physiology concepts. Lippincott Williams & Wilkins.
Modeling cardiac contraction

- Varying elastance model
- Cell-based model

Cardiac cell

- Sarcomere contraction
- Calcium release from the sarcoplasmic reticulum
- Electrical stimulation (action potential)
Modeling cardiac contraction

Varying elastance model \rightarrow cell-based model

Mechanical model (Negroni & Lascano 2008)

Electrophysiological model (ten Tusscher & Panfilov 2006)
Electrophysiology

\[C_m \frac{dV}{dt} + \sum_{i} I_i + I_{stim} = 0 \]

\[\frac{d[Ion]_i}{dt} = \frac{I_{in} - I_{out}}{z_{ion} V_c F} \]

Intracellular calcium (µM)
Sarcomere contraction

\[L = X + h \]

- Elastic length
- Inextensible length
- Thick filament
- Thin filament
\[L = X + h \]

- Elastic length
- Inextensible length

\[F_m \propto h \]

\[\frac{dX}{dt} = B \cdot (h - h_c) \]

- Sliding velocity

\[\Delta h = \Delta L \]

- Steady elongation

\[h_c \]
Excitation-contraction coupling

\[
[TS] = [TS]_{tot} - [TSCa_3] - [TSCa_3^\sim] - [TSCa_3^*] - [TS^*]
\]

\[
\frac{d[TSCa_3]}{dt} = g \times [TSCa_3^\sim] - f \times [TSCa_3]
+ Y_b \times [Ca_i]^3 \times [TS] - Z_b \times [TSCa_3]
\]

\[
\frac{d[TSCa_3^\sim]}{dt} = f \times [TSCa_3] - g \times [TSCa_3^\sim]
- Y_p \times [TSCa_3^\sim] + Z_p \times [TSCa_3^*]
\]

\[
\frac{d[TSCa_3^*]}{dt} = Z_r \times [Ca_i]^3 \times [TS^*] - Y_r \times [TSCa_3^*]
+ Y_p \times [TSCa_3^\sim] - Z_p \times [TSCa_3^*]
\]

\[
\frac{d[TS^*]}{dt} = Y_r \times [TSCa_3^*] - Z_r \times [Ca_i]^3 \times [TS^*] - g_d \times [TS^*]
\]

\[
f = f_0 \exp(-R_{La} \times (L - L_a))
\]

\[
g = Z_a + Y_v \times (1 - \exp(-\gamma \times (h - h_{wr})^2))
\]

\[
g_d = Y_d \exp(-Y_c \times (L - L_c))
\]

\[F_m \propto [TSCa_3^\sim], [TSCa_3^*], [TS^*]\]
From cell to organ

Both ventricles are assimilated to simple spheres and the pressure and volume can be related to the force and half-sarcomere length:

\[N \text{ half-sarcomeres are aligned along a circle of radius } R: \]

\[L_m = \frac{2\pi R}{N} \]

\[V_{int} = \frac{4}{3} \pi r_{int}^3 \]

Blood volume inside the ventricular cavity is given by:

\[V_{int} + V_{wr} = \frac{4}{3} \pi R^3 \]

\[\Rightarrow L_m \text{ and } V_{int} \text{ are linked} \]

The wall stress \(\sigma \) is considered constant and is related to the pressure inside the ventricular cavity:

\[P = \sigma \left(\frac{r_{out}^2}{r_{in}^2} - 1 \right) \]

The wall stress is also related to the normalized force \(F_m \) given by the sarcomere model:

\[\sigma = F_m \frac{L_m}{L_r} \]

\[\Rightarrow P \text{ and } F_m \text{ are linked} \]

Cardiovascular system model (CVS)

Results: Baseline

- Force (mN/mm²), Calcium (10⁻¹ μM)
- Action potential (mV)
- Sarcomere length (µm)
- Left ventricular volume (ml)

Graphs showing the changes in force, calcium, action potential, sarcomere length, and left ventricular volume over time.
Cardiovascular system model (CVS)

Results: Fogarty balloon

\[P_{pa} V_{pa} \quad P_{pu} V_{pu} \]
\[P_{pv} V_{pv} \quad P_{pv} V_{pv} \]
\[P_{rv} V_{rv} \quad P_{rv} V_{rv} \]
\[P_{lv} V_{lv} \quad P_{lv} V_{lv} \]
\[P_{vc} V_{vc} \quad P_{vc} V_{vc} \]
\[P_{ao} V_{ao} \quad P_{ao} V_{ao} \]

\[R_{pul} \quad R_{mt} \quad R_{sys} \quad R_{av} \quad R_{tc} \quad R_{pv} \]

Active contraction

\[\text{Pressure (mmHg)} \]
\[\text{Volume (ml)} \]
Cardiovascular system model (CVS)

Results: Fogarty balloon

\[\begin{align*}
 P_{pa} & = V_{pa} \\
 & \text{Pul. Art.} \\
 R_{pul} & \\
 P_{pv} & = V_{pv} \\
 & \text{Right V.} \\
 R_{pv} & \\
 P_{rv} & = V_{rv} \\
 & \text{Active contraction} \\
 R_{t} & \\
 P_{vc} & = V_{vc} \\
 & \text{Vena cava} \\
 R_{sys} & \\
 P_{ao} & = V_{ao} \\
 & \text{Aorta}
\end{align*} \]
Cardiovascular system model (CVS)

Results: Ventricular failure
Future perspectives:

- Fluid therapy: « Will a patient be fluid responsive? »

 -> Need for indicators of fluid responsiveness
Future perspectives:

• Fluid therapy: « Will a patient be fluid responsive ? »
 -> Need for indicators of fluid responsiveness

• Contractility index: « What is the contractile state of a patient’s heart ? »
 -> Need for a contractility index that is not load dependent (and preferably available with non-invasive measures)
 -> comparison of different proposed indices